Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сбор_з_у_м.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
7.39 Mб
Скачать

Пример 6

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельно решения. Ответ и полное решение в конце урока.

В общем случае с дробями в интегралах не всё так просто, дополнительный материал по интегрированию дробей некоторых видов можно найти в статье: Интегрирование некоторых дробей. Но, прежде чем перейти к вышеуказанной статье, необходимо ознакомиться с уроком: Метод замены в неопределенном интеграле. Дело в том, что подведение функции под дифференциал или метод замены переменной является ключевым моментом в изучении темы, поскольку встречается не только «в чистых заданиях на метод замены», но и во многих других разновидностях интегралов.

Решения и ответы:

Пример 2: Решение:

Пример 4: Решение:

В данном примере мы использовали формулу сокращенного умножения 

Пример 6: Решение:

8.1.1. Метод замены переменной в неопределенном интеграле. Примеры решений

На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной. Для успешного освоения материала требуются начальные знания и навыки интегрирования. Если есть ощущение пустого полного чайника в интегральном исчислении, то сначала следует ознакомиться с материалом Неопределенный интеграл. Примеры решений, где объяснено в доступной форме, что такое интеграл и подробно разобраны базовые примеры для начинающих.

Технически метод замены переменной в неопределенном интеграле реализуется двумя способами:

– Подведение функции под знак дифференциала.

– Собственно замена переменной.

По сути дела, это одно и то же, но оформление решения выглядит по-разному. Начнем с более простого случая.

Подведение функции под знак дифференциала

На уроке Неопределенный интеграл. Примеры решений мы научились раскрывать дифференциал. Напоминаем пример, который мы приводили:

.

То есть, раскрыть дифференциал – это почти то же самое, что найти производную.

Пример 1

Найти неопределенный интеграл.

.

Выполнить проверку.

Смотрим на таблицу интегралов и находим похожую формулу:

.

Но проблема заключается в том, что у нас под синусом не просто буковка «икс», а сложное выражение. Что делать?

Подводим функцию (3x + 1) под знак дифференциала:

.

Раскрывая дифференциал, легко проверить, что, действительно, проведено тождественное преобразование:

Фактически

и – это запись одного и того же.

Но, тем не менее, остался вопрос, а как мы пришли к мысли, что на первом шаге нужно записать наш интеграл именно так: .

Почему так, а не иначе?

Формула и все другие табличные формулы справедливы и применимы НЕ ТОЛЬКО для переменной x, но и для любого сложного выражения ЛИШЬ БЫ АРГУМЕНТ ФУНКЦИИ (в нашем примере - это 3x + 1) И ВЫРАЖЕНИЕ ПОД ЗНАКОМ ДИФФЕРЕНЦИАЛА БЫЛИ ОДИНАКОВЫМИ.

Поэтому мысленное рассуждение при решении должно складываться примерно так:

«Мне надо решить интеграл . Я посмотрел в таблицу и нашел похожую формулу . Но у меня сложный аргумент (3x + 1) и формулой я сразу воспользоваться не могу. Но если мне удастся получить (3x + 1) и под знаком дифференциала, то всё будет нормально. Если я запишу d(3x + 1), тогда: d(3x + 1) = (3x + 1)’dx = 3dx.

Но в исходном интеграле

множителя-тройки нет, поэтому, чтобы подынтегральная функция не изменилась, мне надо её домножить на (1/3)».

В ходе примерно таких мысленных рассуждений и рождается запись:

.

Теперь можно пользоваться табличной формулой :

Готово. Единственное отличие: у нас не буква «икс», а сложное выражение (3x + 1).

Выполним проверку. Открываем таблицу производных и дифференцируем ответ:

Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Обратите внимание, что в ходе проверки мы использовали правило дифференцирования сложной функции .

По сути дела, подведение функции под знак дифференциала и – это два взаимно обратных правила.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]