
- •Математика Сборник заданий и упражнений для текущего контроля знаний
- •Содержание
- •Вводная часть
- •В соответствии с гос, предшествующий уровень образования абитуриента должен быть не ниже (полного) среднего общего образования.
- •1. Алгебра высказываний
- •1.1. Аксиоматический метод и его понятийный аппарат
- •1.2. Основные законы математической логики.
- •Операция отрицания, или отрицание высказывания
- •Операция конъюнкции, или конъюнкция высказываний
- •Операция дизъюнкции, или дизъюнкция высказываний
- •Операция эквивалентности, или эквивалентность высказываний.
- •Операция импликации, или импликация высказываний
- •Порядок старшинства операций
- •Задача 2.
- •2. Матрицы.
- •2.1. Алгебра матриц
- •2) Умножение матрицы на число.
- •2.2. Вычисление определителей
- •2.3. Вычисление обратной матрицы
- •6) Проверка:
- •3. Решение системы линейных уравнений
- •3.1. Решение системы линейных уравнений методом подстановки
- •3.2. Решение системы методом почленного сложения (вычитания) уравнений системы
- •3.3. Решение системы по правилу Крамера
- •3.4. Решение системы с помощью обратной матрицы
- •3.5. Решение системы линейных уравнений методом Гаусса (последовательного исключения неизвестных)
- •3.6. Несовместные системы. Системы с общим решением. Частные решения
- •4. Комплексные числа
- •4.1. Понятие комплексного числа
- •4.2. Алгебраическая форма комплексного числа. Алгебра комплексных чисел
- •4.3. Тригонометрическая и показательная формы комплексного числа
- •Возведение комплексных чисел в степень
- •Извлечение корней из комплексных чисел
- •5. Математические формулы и графики
- •5.1. Математические формулы
- •5.2. Графики и основные свойства элементарных функций
- •Как правильно построить координатные оси?
- •График линейной функции
- •График квадратичной, кубической функции, график многочлена
- •Кубическая парабола
- •График функции
- •График гиперболы
- •График показательной функции
- •График логарифмической функции
- •Графики тригонометрических функций
- •Графики обратных тригонометрических функций
- •6. Пределы функций
- •6.1. Основные методы вычисления пределов
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •6.2. Замечательные пределы.
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •7. Производные функций
- •7.1. Производные функций одной переменной.
- •Пример 1
- •Пример 7
- •4) Производная частного функций
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Пример 12
- •Пример 13
- •Решения и ответы:
- •7.1.3. Сложные производные. Логарифмическая производная. Производная степенно-показательной функции
- •Пример 1
- •Сложные производные
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 12
- •Производная степенно-показательной функции
- •Пример 13
- •Пример 14
- •Пример 15
- •Решения и ответы:
- •7.1.4. Производная функции, заданной неявно
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •7.1.5. Производная функции, заданной параметрически.
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Решения и ответы:
- •7.2. Простейшие типовые задачи с производной. Примеры решений
- •Производная функции в точке
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Уравнение касательной к графику функции
- •Пример 5
- •Пример 6
- •Дифференциал функции одной переменной для приближенных вычислений
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Вторая производная
- •Пример 11
- •Пример 12
- •Решения и ответы:
- •7.3. Частные производные. Примеры решений
- •Пример 1
- •Особенности вычисления частных производных
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Приближенные вычисления с помощью дифференциала функции одной переменной
- •Пример 1
- •Пример 2
- •Пример 3
- •Абсолютная и относительная погрешности вычислений
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Приближенные вычисления с помощью полного дифференциала функции двух переменных
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Пример 12
- •Решения и ответы:
- •7.5. Частные производные функции трёх переменных
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Частные производные второго порядка функции трёх переменных
- •Пример 10
- •Пример 11
- •Решения и ответы:
- •8. Интегралы
- •8.1. Неопределенный интеграл. Подробные примеры решений
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Решения и ответы:
- •8.1.1. Метод замены переменной в неопределенном интеграле. Примеры решений
- •Подведение функции под знак дифференциала
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Метод замены переменной в неопределенном интеграле
- •Пример 5
- •Пример 6
- •Пример 11
- •Пример 12
- •Пример 13
- •Пример 14
- •Решения и ответы:
- •8.1.2. Интегрирование по частям. Примеры решений
- •8.1.3. Интегралы от логарифмов Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •8.1.4. Интегралы от экспоненты, умноженной на многочлен
- •Пример 5
- •Пример 12
- •Пример 13
- •Решения и ответы:
- •8.1.7. Интегралы от тригонометрических функций. Примеры решений
- •Пример 1
- •Пример 8
- •Пример 9
- •Пример 10
- •Метод замены переменной
- •Пример 11
- •Пример 12
- •Пример 13
- •Пример 14
- •Пример 15
- •Пример 16
- •Универсальная тригонометрическая подстановка
- •Пример 17
- •Пример 18
- •Пример 19
- •8.1.8. Интегрирование некоторых дробей. Методы и приёмы решения
- •Метод разложения числителя Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Метод подведения под знак дифференциала для простейших дробей
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Метод выделения полного квадрата
- •Пример 9
- •Пример 10
- •Пример 11
- •Пример 12
- •Пример 13
- •Подведение числителя под знак дифференциала
- •Пример 14
- •Пример 15
- •Пример 16
- •8.1.9. Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов
- •Интегрирование правильной дробно-рациональной функции
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 9
- •Решения и ответы:
- •8.1.10. Интегрирование корней (иррациональных функций). Примеры решений
- •Интегралы от корней. Типовые методы и приемы решения
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Интегрирование биномиальных интегралов
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Решения и ответы:
- •8.1.11. Сложные интегралы
- •Последовательная замена переменной и интегрирование по частям Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Метод сведения интеграла к самому себе
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Интегрирование сложных дробей
- •Пример 9
- •Пример 10
- •Пример 14
- •Интегрирование сложных тригонометрических функций
- •Пример 15
- •Пример 16
- •Пример 17
- •Пример 18
- •Пример 19
- •Пример 20
- •Пример 25
- •Решения и ответы:
- •8.2. Определенный интеграл. Примеры решений
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •8.2.1. Замена переменной в определенном интеграле
- •Пример 5
- •Пример 6
- •Пример 7
- •8.2.2. Метод интегрирования по частям в определенном интеграле
- •Пример 8
- •Пример 9
- •Решения и ответы:
- •8.2.3. Как вычислить площадь фигуры с помощью определенного интеграла
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Решения и ответы:
- •8.2.4. Как вычислить объем тела вращения с помощью определенного интеграла?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси ox Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси oy
- •Пример 5
- •Пример 6
- •Пример 7
- •Решения и ответы:
- •8.3. Несобственные интегралы. Примеры решений
- •8.3.1. Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •8.3.2. Несобственные интегралы от неограниченных функций
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Решения и ответы:
- •8.4. Эффективные методы решения определенных и несобственных интегралов
- •8.4.1. Метод решения определенного интеграла от четной функции по симметричному относительно нуля отрезку
- •Пример 1
- •Пример 2
- •Пример 3
- •Вычисление площади круга с помощью определенного интеграла. Тригонометрическая подстановка
- •Пример 4
- •Пример 5
- •8.4.2. Метод решения определенного интеграла от нечетной функции по симметричному относительно нуля отрезку
- •Пример 6
- •8.4.3. Метод решения несобственного интеграла с бесконечным нижним пределом
- •Пример 7
- •Пример 8
- •8.4.4. Метод решения несобственного интеграла с бесконечными пределами интегрирования
- •Пример 9
- •Пример 10
- •Пример 11
- •8.4.5. Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка
- •Пример 12
- •Пример 13
- •8.4.6. Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования
- •Решения и ответы:
- •Приложение 1. Числа
- •Приложение 2. Упражнения по элементам финансовой математики
- •Литература Основной список
- •Дополнительный список
Пример 2
Найти неопределенный интеграл. Выполнить проверку.
.
Это пример для самостоятельно решения. Ответ и полное решение в конце урока.
Когда мы находим неопределенный интеграл, то ВСЕГДА стараемся сделать проверку, тем более, для этого есть прекрасная возможность. Далеко не все типы задач в высшей математике являются подарком с этой точки зрения. Неважно, что часто в контрольных заданиях проверки не требуется, её никто, и ничто не мешает провести на черновике. Исключение можно сделать лишь тогда, когда не хватает времени (например, на зачете, экзамене). Лично я всегда проверяю интегралы, а отсутствие проверки считаю халтурой и некачественно выполненным заданием.
Пример 3
Найти неопределенный интеграл:
.
Выполнить проверку.
Решение:
Анализируя интеграл, мы видим, что у нас
под интегралом произведение двух
функций, да еще и возведение в степень
целого выражения. К сожалению, на поприще
интегральной битвы нет
хороших и удобных формул
для интегрирования произведения и
частного в виде:
или
.
Поэтому, когда дано произведение или частное, всегда имеет смысл посмотреть, а нельзя ли преобразовать подынтегральную функцию в сумму? Рассматриваемый пример – тот случай, когда можно.
Сначала приведём полное решение, комментарии будут ниже.
(1) Используем старую добрую формулу квадрата суммы для любых действительных чисел , избавляясь от степени над общей скобкой.
(2) Вносим в скобку, избавляясь от произведения.
(3) Используем свойства линейности интеграла (оба правила сразу).
(4)
Превращаем интегралы по табличной
формуле
.
(5)
Упрощаем ответ. Здесь следует обратить
внимание на обыкновенную неправильную
дробь
– она несократима и в ответ входит
именно в таком виде.
Не
нужно делить на калькуляторе
!
Не
нужно представлять ее в виде
!
Проверка:
Получена исходная подынтегральная функция, а значит, интеграл найден правильно.
В
ходе проверки функцию всегда желательно
«упаковать» до первоначального вида,
вынося, в данном случае,
за скобки и применяя формулу сокращенного
умножения в обратном направлении:
.
Пример 4
Найти неопределенный интеграл
.
Выполнить проверку.
Это пример для самостоятельно решения. Ответ и полное решение в конце урока.
Пример 5
Найти неопределенный интеграл
.
Выполнить проверку.
В данном примере подынтегральная функция представляет собой дробь. Когда мы видим в подынтегральном выражении дробь, то первой мыслью должен быть вопрос: «А нельзя ли как-нибудь от этой дроби избавиться, или хотя бы её упростить?».
Замечаем, что в знаменателе находится одинокий корень из «икс». Один в поле – не воин, значит, можно почленно разделить числитель на знаменатель:
Действия с дробными степенями мы не комментируем, так как о них неоднократно шла речь в статьях о производной функции.
Если Вас все-таки ставит в тупик такой пример, как
,
и
ни в какую не получается правильный
ответ
,
то рекомендуем обратиться к школьным учебникам. В высшей математике дроби и действия с ними встречаются на каждом шагу.
Также обратите внимание, что в решении пропущен один шаг, а именно, применение правил , . Обычно при определенном опыте решения интегралов данные правила считают очевидным фактом и не расписывают подробно.