
- •Математика Сборник заданий и упражнений для текущего контроля знаний
- •Содержание
- •Вводная часть
- •В соответствии с гос, предшествующий уровень образования абитуриента должен быть не ниже (полного) среднего общего образования.
- •1. Алгебра высказываний
- •1.1. Аксиоматический метод и его понятийный аппарат
- •1.2. Основные законы математической логики.
- •Операция отрицания, или отрицание высказывания
- •Операция конъюнкции, или конъюнкция высказываний
- •Операция дизъюнкции, или дизъюнкция высказываний
- •Операция эквивалентности, или эквивалентность высказываний.
- •Операция импликации, или импликация высказываний
- •Порядок старшинства операций
- •Задача 2.
- •2. Матрицы.
- •2.1. Алгебра матриц
- •2) Умножение матрицы на число.
- •2.2. Вычисление определителей
- •2.3. Вычисление обратной матрицы
- •6) Проверка:
- •3. Решение системы линейных уравнений
- •3.1. Решение системы линейных уравнений методом подстановки
- •3.2. Решение системы методом почленного сложения (вычитания) уравнений системы
- •3.3. Решение системы по правилу Крамера
- •3.4. Решение системы с помощью обратной матрицы
- •3.5. Решение системы линейных уравнений методом Гаусса (последовательного исключения неизвестных)
- •3.6. Несовместные системы. Системы с общим решением. Частные решения
- •4. Комплексные числа
- •4.1. Понятие комплексного числа
- •4.2. Алгебраическая форма комплексного числа. Алгебра комплексных чисел
- •4.3. Тригонометрическая и показательная формы комплексного числа
- •Возведение комплексных чисел в степень
- •Извлечение корней из комплексных чисел
- •5. Математические формулы и графики
- •5.1. Математические формулы
- •5.2. Графики и основные свойства элементарных функций
- •Как правильно построить координатные оси?
- •График линейной функции
- •График квадратичной, кубической функции, график многочлена
- •Кубическая парабола
- •График функции
- •График гиперболы
- •График показательной функции
- •График логарифмической функции
- •Графики тригонометрических функций
- •Графики обратных тригонометрических функций
- •6. Пределы функций
- •6.1. Основные методы вычисления пределов
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •6.2. Замечательные пределы.
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •7. Производные функций
- •7.1. Производные функций одной переменной.
- •Пример 1
- •Пример 7
- •4) Производная частного функций
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Пример 12
- •Пример 13
- •Решения и ответы:
- •7.1.3. Сложные производные. Логарифмическая производная. Производная степенно-показательной функции
- •Пример 1
- •Сложные производные
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 12
- •Производная степенно-показательной функции
- •Пример 13
- •Пример 14
- •Пример 15
- •Решения и ответы:
- •7.1.4. Производная функции, заданной неявно
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •7.1.5. Производная функции, заданной параметрически.
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Решения и ответы:
- •7.2. Простейшие типовые задачи с производной. Примеры решений
- •Производная функции в точке
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Уравнение касательной к графику функции
- •Пример 5
- •Пример 6
- •Дифференциал функции одной переменной для приближенных вычислений
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Вторая производная
- •Пример 11
- •Пример 12
- •Решения и ответы:
- •7.3. Частные производные. Примеры решений
- •Пример 1
- •Особенности вычисления частных производных
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Приближенные вычисления с помощью дифференциала функции одной переменной
- •Пример 1
- •Пример 2
- •Пример 3
- •Абсолютная и относительная погрешности вычислений
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Приближенные вычисления с помощью полного дифференциала функции двух переменных
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Пример 12
- •Решения и ответы:
- •7.5. Частные производные функции трёх переменных
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Частные производные второго порядка функции трёх переменных
- •Пример 10
- •Пример 11
- •Решения и ответы:
- •8. Интегралы
- •8.1. Неопределенный интеграл. Подробные примеры решений
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Решения и ответы:
- •8.1.1. Метод замены переменной в неопределенном интеграле. Примеры решений
- •Подведение функции под знак дифференциала
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Метод замены переменной в неопределенном интеграле
- •Пример 5
- •Пример 6
- •Пример 11
- •Пример 12
- •Пример 13
- •Пример 14
- •Решения и ответы:
- •8.1.2. Интегрирование по частям. Примеры решений
- •8.1.3. Интегралы от логарифмов Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •8.1.4. Интегралы от экспоненты, умноженной на многочлен
- •Пример 5
- •Пример 12
- •Пример 13
- •Решения и ответы:
- •8.1.7. Интегралы от тригонометрических функций. Примеры решений
- •Пример 1
- •Пример 8
- •Пример 9
- •Пример 10
- •Метод замены переменной
- •Пример 11
- •Пример 12
- •Пример 13
- •Пример 14
- •Пример 15
- •Пример 16
- •Универсальная тригонометрическая подстановка
- •Пример 17
- •Пример 18
- •Пример 19
- •8.1.8. Интегрирование некоторых дробей. Методы и приёмы решения
- •Метод разложения числителя Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Метод подведения под знак дифференциала для простейших дробей
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Метод выделения полного квадрата
- •Пример 9
- •Пример 10
- •Пример 11
- •Пример 12
- •Пример 13
- •Подведение числителя под знак дифференциала
- •Пример 14
- •Пример 15
- •Пример 16
- •8.1.9. Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов
- •Интегрирование правильной дробно-рациональной функции
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 9
- •Решения и ответы:
- •8.1.10. Интегрирование корней (иррациональных функций). Примеры решений
- •Интегралы от корней. Типовые методы и приемы решения
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Интегрирование биномиальных интегралов
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Решения и ответы:
- •8.1.11. Сложные интегралы
- •Последовательная замена переменной и интегрирование по частям Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Метод сведения интеграла к самому себе
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Интегрирование сложных дробей
- •Пример 9
- •Пример 10
- •Пример 14
- •Интегрирование сложных тригонометрических функций
- •Пример 15
- •Пример 16
- •Пример 17
- •Пример 18
- •Пример 19
- •Пример 20
- •Пример 25
- •Решения и ответы:
- •8.2. Определенный интеграл. Примеры решений
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •8.2.1. Замена переменной в определенном интеграле
- •Пример 5
- •Пример 6
- •Пример 7
- •8.2.2. Метод интегрирования по частям в определенном интеграле
- •Пример 8
- •Пример 9
- •Решения и ответы:
- •8.2.3. Как вычислить площадь фигуры с помощью определенного интеграла
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Решения и ответы:
- •8.2.4. Как вычислить объем тела вращения с помощью определенного интеграла?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси ox Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси oy
- •Пример 5
- •Пример 6
- •Пример 7
- •Решения и ответы:
- •8.3. Несобственные интегралы. Примеры решений
- •8.3.1. Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •8.3.2. Несобственные интегралы от неограниченных функций
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Решения и ответы:
- •8.4. Эффективные методы решения определенных и несобственных интегралов
- •8.4.1. Метод решения определенного интеграла от четной функции по симметричному относительно нуля отрезку
- •Пример 1
- •Пример 2
- •Пример 3
- •Вычисление площади круга с помощью определенного интеграла. Тригонометрическая подстановка
- •Пример 4
- •Пример 5
- •8.4.2. Метод решения определенного интеграла от нечетной функции по симметричному относительно нуля отрезку
- •Пример 6
- •8.4.3. Метод решения несобственного интеграла с бесконечным нижним пределом
- •Пример 7
- •Пример 8
- •8.4.4. Метод решения несобственного интеграла с бесконечными пределами интегрирования
- •Пример 9
- •Пример 10
- •Пример 11
- •8.4.5. Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка
- •Пример 12
- •Пример 13
- •8.4.6. Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования
- •Решения и ответы:
- •Приложение 1. Числа
- •Приложение 2. Упражнения по элементам финансовой математики
- •Литература Основной список
- •Дополнительный список
Пример 12
Найти
производную функции
Это пример для самостоятельного решения. Образец оформления примера данного типа в конце урока.
С помощью логарифмической производной можно было решить любой из примеров №№4-7, другое дело, что там функции проще, и, может быть, использование логарифмической производной не слишком-то и оправдано.
Производная степенно-показательной функции
Данную функцию мы еще не рассматривали. Степенно-показательная функция – это функция, у которой и степень и основание зависят от «икс». Классический пример, который вам приведут в любом учебнике или на любой лекции:
Как найти производную от степенно-показательной функции?
Необходимо использовать только что рассмотренный приём – логарифмическую производную. Навешиваем логарифмы на обе части:
Как правило, в правой части из-под логарифма выносится степень:
В результате в правой части у нас получилось произведение двух функций, которое будет дифференцироваться по стандартной формуле .
Находим производную, для этого заключаем обе части под штрихи:
Дальнейшие действия несложны:
Окончательно:
Если какое-то преобразование не совсем понятно, пожалуйста, внимательно перечитайте объяснения Примера №11.
В практических заданиях степенно-показательная функция всегда будет сложнее, чем рассмотренный лекционный пример.
Пример 13
Найти
производную функции
Используем
логарифмическую производную.
В правой части у нас константа и произведение двух множителей – «икса» и «логарифма логарифма икс» (под логарифм вложен еще один логарифм). При дифференцировании константу, как мы помним, лучше сразу вынести за знак производной, чтобы она не мешалась под ногами; и, конечно, применяем знакомое правило :
Как видите, алгоритм применения логарифмической производной не содержит в себе каких-то особых хитростей или уловок, и нахождение производной степенно-показательной функции обычно не связано с «мучениями».
Заключительные два примера предназначены для самостоятельного решения.
Пример 14
Найти
производную функции
Пример 15
Найти
производную функции
Образцы решения и оформления совсем близко.
Не такое и сложное это дифференциальное исчисление
Решения и ответы:
Пример
1:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
Пример
3:
Пример
5:
Примечание:
перед дифференцированием можно было
раскрыть скобки
и
использовать правило
один
раз.
Пример
7:
Пример
9: Сначала преобразуем функцию. Используем
свойства логарифмов:
Найдем
производную. Используем правило
дифференцирования сложной функции:
Пример
10: Сначала преобразуем функцию:
Найдем
производную:
Пример
12: Используем логарифмическую производную.
Преобразуем функцию:
Находим
производную:
Пример
14: Используем логарифмическую
производную:
Пример
15: Используем логарифмическую
производную:
7.1.4. Производная функции, заданной неявно
Или короче – производная неявной функции. Что такое неявная функция? Поскольку данный курс носит практическую направленность, мы стараемся избегать определений, формулировок теорем, но здесь это будет уместно сделать. А что такое вообще функция?
Функция
одной переменной
– это правило, по которому каждому
значению независимой переменной
соответствует одно и только одно значение
функции
.
Переменная называется независимой переменной или аргументом.
Переменная называется зависимой переменной или функцией.
Грубо говоря, буковка «игрек» в данном случае – и есть функция.
До сих пор мы рассматривали функции, заданные в явном виде. Что это значит? Устроим разбор полётов на конкретных примерах.
Рассмотрим
функцию
.
Мы видим, что слева у нас одинокий «игрек» (функция), а справа – только «иксы». То есть, функция y в явном виде выражена через независимую переменную x.
Рассмотрим
другую функцию:
.
Здесь
переменные x
и y
расположены «вперемешку». Причем
никакими способами
невозможно выразить
«игрек» только через «икс». Что это за
способы? Перенос слагаемых из части в
часть со сменой знака, вынесение за
скобки, перекидывание множителей по
правилу пропорции и др. Перепишите
равенство
и попробуйте выразить «игрек» в явном
виде:
.
Можно крутить-вертеть уравнение часами,
но у вас этого не получится.
Разрешите познакомить: , – пример неявной функции.
В курсе математического анализа доказано, что неявная функция существует (однако не всегда), у неё есть график (точно так же, как и у «нормальной» функции). У неявной функции точно так же существует первая производная, вторая производная и т.д. Как говорится, все права неявной функции соблюдены.
На этом уроке мы научимся находить производную от функции, заданной неявно. Это не так сложно! Все правила дифференцирования, таблица производных элементарных функций остаются в силе. Разница в одном своеобразном моменте, который мы рассмотрим прямо сейчас.
Да, и сообщу хорошую новость – рассмотренные ниже задания выполняются по довольно жесткому и чёткому алгоритму (без камня перед тремя дорожками).