Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сбор_з_у_м.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
7.39 Mб
Скачать

Пример 12

Найти производную функции 

Это пример для самостоятельного решения. Образец оформления примера данного типа в конце урока.

С помощью логарифмической производной можно было решить любой из примеров №№4-7, другое дело, что там функции проще, и, может быть, использование логарифмической производной не слишком-то и оправдано.

Производная степенно-показательной функции

Данную функцию мы еще не рассматривали. Степенно-показательная функция – это  функция, у которой и степень и основание зависят от «икс». Классический пример, который вам приведут в любом учебнике или на любой лекции:

Как найти производную от степенно-показательной функции?

Необходимо использовать только что рассмотренный приём – логарифмическую производную. Навешиваем логарифмы на обе части:

Как правило, в правой части из-под логарифма выносится степень:

В результате в правой части у нас получилось произведение двух функций, которое будет дифференцироваться по стандартной формуле  .

Находим производную, для этого заключаем обе части под штрихи:

Дальнейшие действия несложны:

Окончательно: 

Если какое-то преобразование не совсем понятно, пожалуйста, внимательно перечитайте объяснения Примера №11.

В практических заданиях степенно-показательная функция всегда будет сложнее, чем рассмотренный лекционный пример.

Пример 13

Найти производную функции 

Используем логарифмическую производную.

В правой части у нас константа и произведение двух множителей – «икса» и «логарифма логарифма икс» (под логарифм вложен еще один логарифм). При дифференцировании константу, как мы помним, лучше сразу вынести за знак производной, чтобы она не мешалась под ногами; и, конечно, применяем знакомое правило  :

Как видите, алгоритм применения логарифмической производной не содержит в себе каких-то особых хитростей или уловок, и нахождение производной степенно-показательной функции обычно не связано с «мучениями».

Заключительные два примера предназначены для самостоятельного решения.

Пример 14

Найти производную функции 

Пример 15

Найти производную функции 

Образцы решения и оформления совсем близко.

Не такое и сложное это дифференциальное исчисление

Решения и ответы:

Пример 1:  ,  ,  , ,  ,  ,   ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , 

Пример 3:

Пример 5:  Примечание: перед дифференцированием можно было раскрыть скобки   и использовать правило   один раз.

Пример 7: 

Пример 9: Сначала преобразуем функцию. Используем свойства логарифмов: Найдем производную. Используем правило дифференцирования сложной функции:

Пример 10: Сначала преобразуем функцию:   Найдем производную:

Пример 12: Используем логарифмическую производную. Преобразуем функцию: Находим производную:

Пример 14: Используем логарифмическую производную:

Пример 15: Используем логарифмическую производную:

7.1.4. Производная функции, заданной неявно

Или короче – производная неявной функции. Что такое неявная функция? Поскольку данный курс носит практическую направленность, мы стараемся избегать определений, формулировок теорем, но здесь это будет уместно сделать. А что такое вообще функция?

Функция одной переменной – это правило, по которому каждому значению независимой переменной соответствует одно и только одно значение функции .

Переменная называется независимой переменной или аргументом.

Переменная называется зависимой переменной или функцией.

Грубо говоря, буковка «игрек» в данном случае – и есть функция.

До сих пор мы рассматривали функции, заданные в явном виде. Что это значит? Устроим разбор полётов на конкретных примерах.

Рассмотрим функцию .

Мы видим, что слева у нас одинокий «игрек» (функция), а справа – только «иксы». То есть, функция y в явном виде выражена через независимую переменную x.

Рассмотрим другую функцию: .

Здесь переменные x и y расположены «вперемешку». Причем никакими способами невозможно выразить «игрек» только через «икс». Что это за способы? Перенос слагаемых из части в часть со сменой знака, вынесение за скобки, перекидывание множителей по правилу пропорции и др. Перепишите равенство и попробуйте выразить «игрек» в явном виде: . Можно крутить-вертеть уравнение часами, но у вас этого не получится.

Разрешите познакомить: , – пример неявной функции.

В курсе математического анализа доказано, что неявная функция существует (однако не всегда), у неё есть график (точно так же, как и у «нормальной» функции). У неявной функции точно так же существует первая производная, вторая производная и т.д. Как говорится, все права неявной функции соблюдены.

На этом уроке мы научимся находить производную от функции, заданной неявно. Это не так сложно! Все правила дифференцирования, таблица производных элементарных функций остаются в силе. Разница в одном своеобразном моменте, который мы рассмотрим прямо сейчас.

Да, и сообщу хорошую новость – рассмотренные ниже задания выполняются по довольно жесткому и чёткому алгоритму (без камня перед тремя дорожками).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]