
- •Математика Сборник заданий и упражнений для текущего контроля знаний
- •Содержание
- •Вводная часть
- •В соответствии с гос, предшествующий уровень образования абитуриента должен быть не ниже (полного) среднего общего образования.
- •1. Алгебра высказываний
- •1.1. Аксиоматический метод и его понятийный аппарат
- •1.2. Основные законы математической логики.
- •Операция отрицания, или отрицание высказывания
- •Операция конъюнкции, или конъюнкция высказываний
- •Операция дизъюнкции, или дизъюнкция высказываний
- •Операция эквивалентности, или эквивалентность высказываний.
- •Операция импликации, или импликация высказываний
- •Порядок старшинства операций
- •Задача 2.
- •2. Матрицы.
- •2.1. Алгебра матриц
- •2) Умножение матрицы на число.
- •2.2. Вычисление определителей
- •2.3. Вычисление обратной матрицы
- •6) Проверка:
- •3. Решение системы линейных уравнений
- •3.1. Решение системы линейных уравнений методом подстановки
- •3.2. Решение системы методом почленного сложения (вычитания) уравнений системы
- •3.3. Решение системы по правилу Крамера
- •3.4. Решение системы с помощью обратной матрицы
- •3.5. Решение системы линейных уравнений методом Гаусса (последовательного исключения неизвестных)
- •3.6. Несовместные системы. Системы с общим решением. Частные решения
- •4. Комплексные числа
- •4.1. Понятие комплексного числа
- •4.2. Алгебраическая форма комплексного числа. Алгебра комплексных чисел
- •4.3. Тригонометрическая и показательная формы комплексного числа
- •Возведение комплексных чисел в степень
- •Извлечение корней из комплексных чисел
- •5. Математические формулы и графики
- •5.1. Математические формулы
- •5.2. Графики и основные свойства элементарных функций
- •Как правильно построить координатные оси?
- •График линейной функции
- •График квадратичной, кубической функции, график многочлена
- •Кубическая парабола
- •График функции
- •График гиперболы
- •График показательной функции
- •График логарифмической функции
- •Графики тригонометрических функций
- •Графики обратных тригонометрических функций
- •6. Пределы функций
- •6.1. Основные методы вычисления пределов
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •6.2. Замечательные пределы.
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •7. Производные функций
- •7.1. Производные функций одной переменной.
- •Пример 1
- •Пример 7
- •4) Производная частного функций
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Пример 12
- •Пример 13
- •Решения и ответы:
- •7.1.3. Сложные производные. Логарифмическая производная. Производная степенно-показательной функции
- •Пример 1
- •Сложные производные
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 12
- •Производная степенно-показательной функции
- •Пример 13
- •Пример 14
- •Пример 15
- •Решения и ответы:
- •7.1.4. Производная функции, заданной неявно
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •7.1.5. Производная функции, заданной параметрически.
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Решения и ответы:
- •7.2. Простейшие типовые задачи с производной. Примеры решений
- •Производная функции в точке
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Уравнение касательной к графику функции
- •Пример 5
- •Пример 6
- •Дифференциал функции одной переменной для приближенных вычислений
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Вторая производная
- •Пример 11
- •Пример 12
- •Решения и ответы:
- •7.3. Частные производные. Примеры решений
- •Пример 1
- •Особенности вычисления частных производных
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Приближенные вычисления с помощью дифференциала функции одной переменной
- •Пример 1
- •Пример 2
- •Пример 3
- •Абсолютная и относительная погрешности вычислений
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Приближенные вычисления с помощью полного дифференциала функции двух переменных
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Пример 12
- •Решения и ответы:
- •7.5. Частные производные функции трёх переменных
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Частные производные второго порядка функции трёх переменных
- •Пример 10
- •Пример 11
- •Решения и ответы:
- •8. Интегралы
- •8.1. Неопределенный интеграл. Подробные примеры решений
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Решения и ответы:
- •8.1.1. Метод замены переменной в неопределенном интеграле. Примеры решений
- •Подведение функции под знак дифференциала
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Метод замены переменной в неопределенном интеграле
- •Пример 5
- •Пример 6
- •Пример 11
- •Пример 12
- •Пример 13
- •Пример 14
- •Решения и ответы:
- •8.1.2. Интегрирование по частям. Примеры решений
- •8.1.3. Интегралы от логарифмов Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •8.1.4. Интегралы от экспоненты, умноженной на многочлен
- •Пример 5
- •Пример 12
- •Пример 13
- •Решения и ответы:
- •8.1.7. Интегралы от тригонометрических функций. Примеры решений
- •Пример 1
- •Пример 8
- •Пример 9
- •Пример 10
- •Метод замены переменной
- •Пример 11
- •Пример 12
- •Пример 13
- •Пример 14
- •Пример 15
- •Пример 16
- •Универсальная тригонометрическая подстановка
- •Пример 17
- •Пример 18
- •Пример 19
- •8.1.8. Интегрирование некоторых дробей. Методы и приёмы решения
- •Метод разложения числителя Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Метод подведения под знак дифференциала для простейших дробей
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Метод выделения полного квадрата
- •Пример 9
- •Пример 10
- •Пример 11
- •Пример 12
- •Пример 13
- •Подведение числителя под знак дифференциала
- •Пример 14
- •Пример 15
- •Пример 16
- •8.1.9. Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов
- •Интегрирование правильной дробно-рациональной функции
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 9
- •Решения и ответы:
- •8.1.10. Интегрирование корней (иррациональных функций). Примеры решений
- •Интегралы от корней. Типовые методы и приемы решения
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Интегрирование биномиальных интегралов
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Решения и ответы:
- •8.1.11. Сложные интегралы
- •Последовательная замена переменной и интегрирование по частям Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Метод сведения интеграла к самому себе
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Интегрирование сложных дробей
- •Пример 9
- •Пример 10
- •Пример 14
- •Интегрирование сложных тригонометрических функций
- •Пример 15
- •Пример 16
- •Пример 17
- •Пример 18
- •Пример 19
- •Пример 20
- •Пример 25
- •Решения и ответы:
- •8.2. Определенный интеграл. Примеры решений
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •8.2.1. Замена переменной в определенном интеграле
- •Пример 5
- •Пример 6
- •Пример 7
- •8.2.2. Метод интегрирования по частям в определенном интеграле
- •Пример 8
- •Пример 9
- •Решения и ответы:
- •8.2.3. Как вычислить площадь фигуры с помощью определенного интеграла
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Решения и ответы:
- •8.2.4. Как вычислить объем тела вращения с помощью определенного интеграла?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси ox Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси oy
- •Пример 5
- •Пример 6
- •Пример 7
- •Решения и ответы:
- •8.3. Несобственные интегралы. Примеры решений
- •8.3.1. Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •8.3.2. Несобственные интегралы от неограниченных функций
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Решения и ответы:
- •8.4. Эффективные методы решения определенных и несобственных интегралов
- •8.4.1. Метод решения определенного интеграла от четной функции по симметричному относительно нуля отрезку
- •Пример 1
- •Пример 2
- •Пример 3
- •Вычисление площади круга с помощью определенного интеграла. Тригонометрическая подстановка
- •Пример 4
- •Пример 5
- •8.4.2. Метод решения определенного интеграла от нечетной функции по симметричному относительно нуля отрезку
- •Пример 6
- •8.4.3. Метод решения несобственного интеграла с бесконечным нижним пределом
- •Пример 7
- •Пример 8
- •8.4.4. Метод решения несобственного интеграла с бесконечными пределами интегрирования
- •Пример 9
- •Пример 10
- •Пример 11
- •8.4.5. Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка
- •Пример 12
- •Пример 13
- •8.4.6. Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования
- •Решения и ответы:
- •Приложение 1. Числа
- •Приложение 2. Упражнения по элементам финансовой математики
- •Литература Основной список
- •Дополнительный список
Пример 5
Найти
производную функции
Это пример для самостоятельного решения, в образце он решен первым способом.
Рассмотрим аналогичные примеры с дробями.
Пример 6
Найти
производную функции
Здесь можно пойти несколькими путями:
или
так:
Но решение запишется более компактно, если в первую очередь использовать правило дифференцирования частного , приняв за весь числитель:
В принципе, пример решён, и если его оставить в таком виде, то это не будет ошибкой. Но при наличии времени всегда желательно проверить на черновике, а нельзя ли ответ упростить?
Минус дополнительных упрощений состоит в том, что есть риск допустить ошибку уже не при нахождении производной, а при банальных школьных преобразованиях. С другой стороны, преподаватели нередко бракуют задание и просят «довести до ума» производную.
Более простой пример для самостоятельного решения:
Пример 7
Найти
производную функции
Продолжаем осваивать приёмы нахождения производной, и сейчас мы рассмотрим типовой случай, когда для дифференцирования предложен «страшный» логарифм
Пример 8
Найти
производную функции
Тут можно пойти длинным путём, используя правило дифференцирования сложной функции:
Но
первый же шаг сразу повергает в уныние
– предстоит взять неприятную производную
от дробной степени
,
а потом ещё и от дроби
.
Поэтому перед тем как брать производную от «навороченного» логарифма, его предварительно упрощают, используя известные школьные свойства:
! Если под рукой есть тетрадь с практикой, перепишите эти формулы прямо туда. Если тетради нет, перерисуйте их на листочек, поскольку оставшиеся примеры урока буду вращаться вокруг этих формул.
Само решение можно оформить примерно так:
Преобразуем
функцию:
Находим
производную:
Предварительное преобразование самой функции значительно упростило решение. Таким образом, когда для дифференцирования предложен подобный логарифм, то его всегда целесообразно «развалить».
А сейчас пара несложных примеров для самостоятельного решения:
Пример 9
Найти
производную функции
Пример 10
Найти производную функции
Все преобразования и ответы в конце урока.
Логарифмическая производная
Если производная от логарифмов – это такая сладкая музыка, то возникает вопрос, а нельзя ли в некоторых случаях организовать логарифм искусственно? Можно! И даже нужно.
Пример 11
Найти
производную функции
Похожие примеры мы недавно рассмотрели. Что делать? Можно последовательно применить правило дифференцирования частного, а потом правило дифференцирования произведения. Недостаток способа состоит в том, что получится огромная трехэтажная дробь, с которой совсем не хочется иметь дела.
Но в теории и практике есть такая замечательная вещь, как логарифмическая производная. Логарифмы можно организовать искусственно, «навесив» их на обе части:
Теперь нужно максимально «развалить» логарифм правой части (формулы перед глазами?). Я распишу этот процесс очень подробно:
Собственно приступаем к дифференцированию. Заключаем под штрих обе части:
Производная правой части достаточно простая, её я комментировать не буду, поскольку если вы читаете этот текст, то должны уверенно с ней справиться.
Как быть с левой частью?
В левой части у нас сложная функция. Предвижу вопрос: «Почему, там же одна буковка «игрек» под логарифмом?».
Дело в том, что эта «одна буковка игрек» – САМА ПО СЕБЕ ЯВЛЯЕТСЯ ФУНКЦИЕЙ (если не очень понятно, обратитесь к статье Производная от функции, заданной неявно). Поэтому логарифм – это внешняя функция, а «игрек» – внутренняя функция. И мы используем правило дифференцирования сложной функции :
В левой части как по мановению волшебной палочки у нас «нарисовалась» производная . Далее по правилу пропорции перекидываем «игрек» из знаменателя левой части наверх правой части:
А теперь вспоминаем, о каком таком «игреке»-функции мы рассуждали при дифференцировании? Смотрим на условие:
Окончательный
ответ: