Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сбор_з_у_м.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
7.39 Mб
Скачать

Пример 6

Найти предел 

Начинаем решать.

Сначала пробуем подставить 3 в выражение под знаком предела Еще раз повторяю – это первое, что нужно выполнять для ЛЮБОГО предела. Данное действие обычно проводится мысленно или на черновике.

 

Получена неопределенность вида  , которую нужно устранять.

Как Вы, наверное, заметили, у нас в числителе находится разность корней. А от корней в математике принято, по-возможности, избавляться. Зачем? А без них жизнь проще.

Когда в числителе (знаменателе) находится разность корней (или корень минус какое-нибудь число), то для раскрытия неопределенности   используют метод умножения числителя и знаменателя на сопряженное выражение.

Вспоминаем нашу нетленную формулу разности квадратов:  И смотрим на наш предел:  Что можно сказать?   у нас в числителе уже есть. Теперь для применения формулы осталось организовать   (которое в и называется сопряженным выражением).

Умножаем числитель на сопряженное выражение:

Обратите внимание, что под корнями при этой операции мы ничего не трогаем.

Хорошо,   мы организовали, но выражение-то под знаком предела изменилось! А для того, чтобы оно не менялось, нужно его разделить на то же самое, т.е. на  :

То есть, мы умножили числитель и знаменатель на сопряженное выражение. В известной степени, это искусственный прием.

Умножили. Теперь самое время применить вверху формулу  :

Неопределенность   не пропала (попробуйте подставить тройку), да и корни тоже не исчезли. Но с суммой корней всё значительно проще, ее можно превратить в постоянное число. Как это сделать? Да просто подставить тройку под корни:

Число, как уже отмечалось ранее, лучше вынести за значок предела.

Теперь осталось разложить числитель и знаменатель на множители, собственно, это следовало сделать раньше.

Готово.

Как должно выглядеть решение данного примера в чистовом варианте? Примерно так:

Умножим числитель и знаменатель на сопряженное выражение.

 

Пример 7

Найти предел 

Сначала попробуйте решить его самостоятельно.

Окончательное решение примера может выглядеть так:

Разложим числитель на множители:

Умножим числитель и знаменатель на сопряженное выражение

Спасибо за внимание.

Помимо рассмотренных типов пределов на практике часто встречаются так называемые Замечательные пределы, с которыми Вы можете ознакомиться в соответствующей статье.

6.2. Замечательные пределы.

Продолжаем наш разговор на тему Пределы и способы их решения. Перед изучением материалов данной страницы настоятельно рекомендую ознакомиться со статьей Пределы. Примеры решений. Из вышеуказанной статьи Вы сможете узнать, что же такое предел, и с чем его едят – это ОЧЕНЬ важно. Почему? Можно не понимать, что такое определители и успешно их решать, можно совершенно не понимать, что такое производная и находить их на «пятёрку». Но вот если Вы не понимаете, что такое предел, то с решением практических заданий придется туго. Также не лишним будет ознакомиться с образцами оформления решений и моими рекомендациями по оформлению. Вся информация изложена в простой и доступной форме.

А для целей данного урока нам потребуются следующие методические материалы:Замечательные пределы и Тригонометрические формулы. Их можно найти на страницеМатематические формулы, таблицы и справочные материалы. Лучше всего методички распечатать – это значительно удобнее, к тому же к ним часто придется обращаться в оффлайне.

Чем же замечательны замечательные пределы? Замечательность данных пределов состоит в том, что они доказаны величайшими умами знаменитых математиков, и благодарным потомкам не приходиться мучаться страшными пределами с нагромождением тригонометрических функций, логарифмов, степеней. То есть при нахождении пределов мы будем пользоваться готовыми результатами, которые доказаны теоретически.

Замечательных пределов существует несколько, но на практике у студентов-заочников в 95% случаев фигурируют два замечательных предела: Первый замечательный предел, Второй замечательный предел. Следует отметить, что это исторически сложившиеся названия, и, когда, например, говорят о «первом замечательном пределе», то подразумевают под этим вполне определенную вещь, а не какой-то случайный, взятый с потолка предел.

Начнем.

6.2.1. Первый замечательный предел

Рассмотрим следующий предел:   (вместо родной буквы «хэ» я буду использовать греческую букву «альфа», это удобнее с точки зрения подачи материала).

Согласно нашему правилу нахождения пределов (см. статью Пределы. Примеры решений) пробуем подставить ноль в функцию: в числителе у нас получается ноль (синус нуля равен нулю), в знаменателе, очевидно, тоже ноль. Таким образом, мы сталкиваемся с неопределенностью вида  , которую, к счастью, раскрывать не нужно. В курсе математического анализа, доказывается, что:

 

Данный математический факт носит название Первого замечательного предела.

Нередко в практических  заданиях функции могут быть расположены по-другому, это ничего не меняет:

 – тот же самый первый замечательный предел.

! Но самостоятельно переставлять числитель и знаменатель нельзя! Если дан предел в виде  , то и решать его нужно в таком же виде, ничего не переставляя.

На практике в качестве параметра   может выступать не только переменная  , но и элементарная функция, сложная функция. Важно лишь, чтобы она стремилась к нулю.

Примеры:

Здесь  , и всё гуд – первый замечательный предел применим.

А вот следующая запись – ересь:

Почему? Потому-что многочлен   не стремится к нулю, он стремится к пятерке.

Кстати, вопрос на засыпку, а чему равен предел  ? Ответ можно найти в конце урока.

На практике не все так гладко, почти никогда студенту не предложат решить халявный предел   и получить лёгкий зачет. Все-таки «халявные» математические определения и формулы вроде    лучше помнить наизусть, это может оказать неоценимую помощь на зачете, когда вопрос будет решаться между «двойкой» и «тройкой», и преподаватель решит задать студенту какой-нибудь простой вопрос или предложить решить простейший пример («а может он (а) все-таки знает чего?!»).

Переходим к рассмотрению практических примеров:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]