
- •Математика Сборник заданий и упражнений для текущего контроля знаний
- •Содержание
- •Вводная часть
- •В соответствии с гос, предшествующий уровень образования абитуриента должен быть не ниже (полного) среднего общего образования.
- •1. Алгебра высказываний
- •1.1. Аксиоматический метод и его понятийный аппарат
- •1.2. Основные законы математической логики.
- •Операция отрицания, или отрицание высказывания
- •Операция конъюнкции, или конъюнкция высказываний
- •Операция дизъюнкции, или дизъюнкция высказываний
- •Операция эквивалентности, или эквивалентность высказываний.
- •Операция импликации, или импликация высказываний
- •Порядок старшинства операций
- •Задача 2.
- •2. Матрицы.
- •2.1. Алгебра матриц
- •2) Умножение матрицы на число.
- •2.2. Вычисление определителей
- •2.3. Вычисление обратной матрицы
- •6) Проверка:
- •3. Решение системы линейных уравнений
- •3.1. Решение системы линейных уравнений методом подстановки
- •3.2. Решение системы методом почленного сложения (вычитания) уравнений системы
- •3.3. Решение системы по правилу Крамера
- •3.4. Решение системы с помощью обратной матрицы
- •3.5. Решение системы линейных уравнений методом Гаусса (последовательного исключения неизвестных)
- •3.6. Несовместные системы. Системы с общим решением. Частные решения
- •4. Комплексные числа
- •4.1. Понятие комплексного числа
- •4.2. Алгебраическая форма комплексного числа. Алгебра комплексных чисел
- •4.3. Тригонометрическая и показательная формы комплексного числа
- •Возведение комплексных чисел в степень
- •Извлечение корней из комплексных чисел
- •5. Математические формулы и графики
- •5.1. Математические формулы
- •5.2. Графики и основные свойства элементарных функций
- •Как правильно построить координатные оси?
- •График линейной функции
- •График квадратичной, кубической функции, график многочлена
- •Кубическая парабола
- •График функции
- •График гиперболы
- •График показательной функции
- •График логарифмической функции
- •Графики тригонометрических функций
- •Графики обратных тригонометрических функций
- •6. Пределы функций
- •6.1. Основные методы вычисления пределов
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •6.2. Замечательные пределы.
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •7. Производные функций
- •7.1. Производные функций одной переменной.
- •Пример 1
- •Пример 7
- •4) Производная частного функций
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Пример 12
- •Пример 13
- •Решения и ответы:
- •7.1.3. Сложные производные. Логарифмическая производная. Производная степенно-показательной функции
- •Пример 1
- •Сложные производные
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 12
- •Производная степенно-показательной функции
- •Пример 13
- •Пример 14
- •Пример 15
- •Решения и ответы:
- •7.1.4. Производная функции, заданной неявно
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •7.1.5. Производная функции, заданной параметрически.
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Решения и ответы:
- •7.2. Простейшие типовые задачи с производной. Примеры решений
- •Производная функции в точке
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Уравнение касательной к графику функции
- •Пример 5
- •Пример 6
- •Дифференциал функции одной переменной для приближенных вычислений
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Вторая производная
- •Пример 11
- •Пример 12
- •Решения и ответы:
- •7.3. Частные производные. Примеры решений
- •Пример 1
- •Особенности вычисления частных производных
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Приближенные вычисления с помощью дифференциала функции одной переменной
- •Пример 1
- •Пример 2
- •Пример 3
- •Абсолютная и относительная погрешности вычислений
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Приближенные вычисления с помощью полного дифференциала функции двух переменных
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Пример 12
- •Решения и ответы:
- •7.5. Частные производные функции трёх переменных
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Частные производные второго порядка функции трёх переменных
- •Пример 10
- •Пример 11
- •Решения и ответы:
- •8. Интегралы
- •8.1. Неопределенный интеграл. Подробные примеры решений
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Решения и ответы:
- •8.1.1. Метод замены переменной в неопределенном интеграле. Примеры решений
- •Подведение функции под знак дифференциала
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Метод замены переменной в неопределенном интеграле
- •Пример 5
- •Пример 6
- •Пример 11
- •Пример 12
- •Пример 13
- •Пример 14
- •Решения и ответы:
- •8.1.2. Интегрирование по частям. Примеры решений
- •8.1.3. Интегралы от логарифмов Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •8.1.4. Интегралы от экспоненты, умноженной на многочлен
- •Пример 5
- •Пример 12
- •Пример 13
- •Решения и ответы:
- •8.1.7. Интегралы от тригонометрических функций. Примеры решений
- •Пример 1
- •Пример 8
- •Пример 9
- •Пример 10
- •Метод замены переменной
- •Пример 11
- •Пример 12
- •Пример 13
- •Пример 14
- •Пример 15
- •Пример 16
- •Универсальная тригонометрическая подстановка
- •Пример 17
- •Пример 18
- •Пример 19
- •8.1.8. Интегрирование некоторых дробей. Методы и приёмы решения
- •Метод разложения числителя Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Метод подведения под знак дифференциала для простейших дробей
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Метод выделения полного квадрата
- •Пример 9
- •Пример 10
- •Пример 11
- •Пример 12
- •Пример 13
- •Подведение числителя под знак дифференциала
- •Пример 14
- •Пример 15
- •Пример 16
- •8.1.9. Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов
- •Интегрирование правильной дробно-рациональной функции
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 9
- •Решения и ответы:
- •8.1.10. Интегрирование корней (иррациональных функций). Примеры решений
- •Интегралы от корней. Типовые методы и приемы решения
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Интегрирование биномиальных интегралов
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Решения и ответы:
- •8.1.11. Сложные интегралы
- •Последовательная замена переменной и интегрирование по частям Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Метод сведения интеграла к самому себе
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Интегрирование сложных дробей
- •Пример 9
- •Пример 10
- •Пример 14
- •Интегрирование сложных тригонометрических функций
- •Пример 15
- •Пример 16
- •Пример 17
- •Пример 18
- •Пример 19
- •Пример 20
- •Пример 25
- •Решения и ответы:
- •8.2. Определенный интеграл. Примеры решений
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •8.2.1. Замена переменной в определенном интеграле
- •Пример 5
- •Пример 6
- •Пример 7
- •8.2.2. Метод интегрирования по частям в определенном интеграле
- •Пример 8
- •Пример 9
- •Решения и ответы:
- •8.2.3. Как вычислить площадь фигуры с помощью определенного интеграла
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Решения и ответы:
- •8.2.4. Как вычислить объем тела вращения с помощью определенного интеграла?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси ox Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси oy
- •Пример 5
- •Пример 6
- •Пример 7
- •Решения и ответы:
- •8.3. Несобственные интегралы. Примеры решений
- •8.3.1. Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •8.3.2. Несобственные интегралы от неограниченных функций
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Решения и ответы:
- •8.4. Эффективные методы решения определенных и несобственных интегралов
- •8.4.1. Метод решения определенного интеграла от четной функции по симметричному относительно нуля отрезку
- •Пример 1
- •Пример 2
- •Пример 3
- •Вычисление площади круга с помощью определенного интеграла. Тригонометрическая подстановка
- •Пример 4
- •Пример 5
- •8.4.2. Метод решения определенного интеграла от нечетной функции по симметричному относительно нуля отрезку
- •Пример 6
- •8.4.3. Метод решения несобственного интеграла с бесконечным нижним пределом
- •Пример 7
- •Пример 8
- •8.4.4. Метод решения несобственного интеграла с бесконечными пределами интегрирования
- •Пример 9
- •Пример 10
- •Пример 11
- •8.4.5. Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка
- •Пример 12
- •Пример 13
- •8.4.6. Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования
- •Решения и ответы:
- •Приложение 1. Числа
- •Приложение 2. Упражнения по элементам финансовой математики
- •Литература Основной список
- •Дополнительный список
1. Алгебра высказываний
1.1. Аксиоматический метод и его понятийный аппарат
Основные понятия. Определение. Аксиома. Аксиоматический метод. Теорема. Доказательство. Основные методы доказательств
Определение.
В любой науке, в математике тоже, существуют некоторые понятия, которые мы принимаем за исходные, или начальные понятия. Это так называемые основные понятия, определить которые достаточно сложно (именно потому, что они основные) и содержание которых можно выяснить только из опыта. Таковы, например, понятия: точки в геометрии, прямой в планиметрии, плоскости в стереометрии, материи в физике, информации в информатике.
Все остальные понятия мы объясняем, выражая их через начальные понятия. Такие объяснения называются определениями. Таким образом, каждое математическое определение опирается либо непосредственно на начальные понятия, либо на понятия, определённые прежде.
Однако здесь невозможно обеспечить всеобщего согласия. Дело в том, что одно и то же, например, геометрическое понятие можно определять различно. Диаметр окружности, например, можно определить как хорду, проходящую через центр, или как хорду наибольшей длины. Приняв за определение одно из этих свойств, можно доказать другое. Отметим, что обычно за определение берут простейшее свойство.
Аксиома. Аксиоматический метод.
При построении любой теории выделяется некоторый набор высказываний, истинность которых постулируется. Такие принимаемые без доказательства высказывания, называются аксиомами. В физике аксиомы называют постулатами, которые являются обобщением опытных данных.
Аксиомы также возникли из опыта, и опыт же проверяет истинность аксиом в их совокупности.
Аксиоматический метод – это способ построения научной (математической) теории, основу которого составляют некоторые исходные положения (аксиомы), а все остальные положения теории получаются как логические следствия аксиом.
Доказательство. Теорема.
Последовательность высказываний рассматриваемой теории, каждое из которых либо является аксиомой, либо выводится из одного или более предыдущих высказываний этой последовательности по логическим правилам вывода, называется доказательством.
Высказывание, которое можно доказать, называется теоремой. Как было указано выше, опыт проверяет истинность аксиом в их совокупности. Проверка состоит в том, что все теоремы математики оказываются согласными с опытом. Этого не случилось бы, если бы система аксиом была ложной.
Каждая теорема может быть выражена в формализованной математической форме вида:
(читается: «для любого элемента х из А(х) следует В(х), где х принадлежит множеству М»).
Посылка А называется условием
теоремы, а следствие В – заключением.
Теорема верна, если выражающая её
логическая связка, в данном случае это
импликация
(читается: «из А следует В», или
«если А, то В»), обеспечивает
истинное высказывание.
Рассмотрим примеры:
Теорема 1. Если сумма цифр натурального числа делится на 3, то и само число делится на 3.
Теорема 2. Если четырёхугольник является прямоугольником, то его диагонали конгруэнтны.
Теорема 3. Диагонали ромба взаимно перпендикулярны.
Из-за краткости формулировки теоремы
3 о диагоналях ромба может показаться,
что эта теорема не имеет формы
.
На самом деле это не так. Полная
формулировка этой теоремы такова
(напомним, что ромбом называется
параллелограмм, у которого все стороны
равны): «Для любого параллелограмма
верно утверждение: если параллелограмм
– ромб, то его диагонали взаимно
перпендикулярны».
Особенность аксиоматического метода.
Ни одно математическое высказывание (или свойство), взятое в отдельности, не является аксиомой, так как его всегда можно доказать на основании других высказываний (свойств). Например, в геометрии обычно принимается за аксиому следующее свойство параллельных прямых линий: «Через одну и ту же точку нельзя провести две различные прямые, параллельные одной и той же прямой» (аксиома параллельности). На основании этой аксиомы (и ряда других) доказывается такое свойство треугольника, как: «Сумма углов треугольника равна 180о». Между тем, можно было бы это свойство принять за аксиому вместо аксиомы параллельности (оставив остальные аксиомы прежними). Тогда свойство параллельности прямых линий можно доказать, и оно станет теоремой.
Таким образом, систему аксиом можно выбирать различными способами. Нужно только, чтобы взятых аксиом было достаточно для вывода всех прочих высказываний.
Отметим, что при построении доказательств число аксиом стремятся, по возможности, уменьшить.
Основные методы доказательств.
Метод цепочек импликаций состоит в том, что из посылки А выстраивается цепочка из n импликаций, последним высказыванием в которой является заключение теоремы В, т.е.
.
В основе этого метода лежит закон цепного высказывания, или закон силлогизма:
.
Символ
означает логический союз «и», а выражение
читается, как «А и В».
Метод от противного.
Этот метод основан на законе контрапозиций, который имеет вид:
.
Символ (
)
соответствует логическому союзу «не»,
выражение
читается, как: «не А», или «не верно,
что А».
Символ (
)
соответствует любому из трёх логических
высказываний:
1) «необходимо и достаточно»,
2) «тогда и только тогда»
3) «эквивалентно»
Метод необходимого и достаточного.
Например, теорема формулируется так: «Чтобы имело место А, необходимо и достаточно выполнение В».
Доказательство такого вида теоремы распадается на две части: сначала доказывается, что если имеет место А, то справедливо В (В необходимо для А), затем доказывается, что если имеет место В, то имеет место и А (В достаточно для А).
Доказательство таким методом базируется на законе тавтологии:
.
Упражнения для самостоятельного анализа к Разделу 1:
Упражнение 1.
Установите правильное соответствие между математическим утверждением и его формулировкой.
-
1. «В любой треугольник можно вписать окружность».
А. Определение
B. Аксиома
C. Теорема
2. «Если все стороны многоугольника касаются окружности, то окружность называется вписанной в многоугольник».
3. «Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна».
Упражнение 2.
Выберите правильный ответ. К неопределяемым понятиям аксиоматического построения геометрии на плоскости относятся …
-
1) фигура, плоскость, луч
2) луч, треугольник, плоскость
3) точка, прямая, плоскость
4) точка, отрезок, плоскость
Упражнение 3.
Среди предложенных математических утверждений евклидовой геометрии аксиомой является…
1) Если две параллельные прямые пересечены секущей, то соответственные углы равны.
2) Две прямые, параллельные третьей прямой, параллельны.
3) Две прямые на плоскости называются параллельными, если они не пересекаются.
4) Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.
Упражнение 4.
Установите правильное соответствие между математическим утверждением и его формулировкой.
-
1. «Трапецией называется четырёхугольник, у которого две стороны параллельны, а две другие – не параллельны».
А. Определение
B. Аксиома
C. Теорема
2. «На каждой прямой и в каждой плоскости имеются, по крайней мере, две точки».
3. «Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны».
Упражнение 5.
Среди предложенных математических утверждений аксиомой является…
1) Через любые две точки плоскости можно провести прямую, и притом только одну.
2) В равнобедренном треугольнике углы при основании равны.
3) Диагонали параллелограмма точкой пересечения делятся пополам.
4) Вертикальные углы равны.