Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сбор_з_у_м.doc
Скачиваний:
0
Добавлен:
21.02.2020
Размер:
7.39 Mб
Скачать

Пример 11

Вычислить несобственный интеграл или установить его расходимость

.

Полное решение и ответ в конце урока.

8.4.5. Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка

Заключительные пункты этой статьи предназначены для читателей, которые хорошо разобрались с несобственными интегралами второго рода на уроке Несобственные интегралы. Примеры решений. Рассмотрим другие несобственные интегралы второго рода. Многие выкладки предыдущего раздела будет справедливы и сейчас.

Сразу конкретная задача:

Пример 12

Вычислить несобственный интеграл или установить его расходимость

.

Подынтегральная функция терпит бесконечные разрывы в обоих концах отрезка интегрирования. Изобразим подынтегральную функцию

на чертёже:

Геометрически данный несобственный интеграл представляет собой площадь бесконечной криволинейной трапеции, которая не ограничена сверху.

Методика решения практически такая же, как и в предыдущем параграфе. Представим несобственный интеграл в виде суммы двух несобственных интегралов:

Если оба интеграла правой части сходятся, то сходится и весь интеграл.

Если хотя бы один из интегралов правой части расходится, то расходится и весь интеграл. А уж интегралы правой части рассматривались во втором разделе урока Несобственные интегралы. Примеры решений.

Но, вместо этого замечаем, что подынтегральная функция является чётной. Чётность использовать МОЖНО. В этом легко убедиться и по чертежу. Таким образом, интеграл целесообразно споловинить, а результат удвоить. Решаем наиболее рациональным способом:

Подынтегральная функция терпит бесконечные разрывы в точках . Данная функция является чётной, а интервал интегрирования симметричен относительно нуля.

Ответ:

; данный интеграл сходится.

Пример 13

Вычислить несобственный интеграл или установить его расходимость

.

Это пример для самостоятельного решения. Всё, как и в предыдущем параграфе – нечетностью функции пользоваться НЕ НУЖНО. Аккуратно делим интеграл на две части и исследуем сходимость по типовому алгоритму.

Полное решение и ответ в конце урока.

Не редкость, когда подынтегральная функция не является четной или нечетной, да и отрезок интегрирования не симметричен относительно нуля.

Например, рассмотрим несобственный интеграл

.

Подынтегральная функция опять терпит бесконечные разрывы в обоих концах отрезка интегрирования. Алгоритм такой же, делим интеграл на два интеграла:

Интегралы правой части разобраны на уроке Несобственные интегралы. Примеры решений. Если оба интеграла будут сходиться, то будет сходиться и весь интеграл. Если хотя бы один интеграл правой части расходится, то расходится и весь интеграл.

Кстати, не важно, в каком порядке исследовать сходимость интегралов правой части. Можно сначала исследовать сходимость интеграла

,

а потом (если до этого дойдет), исследовать сходимость первого интеграла правой части.

8.4.6. Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования

Такие примеры встречаются на практике относительно редко, поэтому ограничимся только обзором. Пример опять же будет, в известной степени, условным. Рассмотрим несобственный интеграл

.

На концах отрезка интегрирования всё хорошо. Но подынтегральная функция терпит бесконечный разрыв прямо на отрезке в точке x = 1. Подынтегральная функция является четной, но это не имеет никакого значения, поскольку отрезок интервал интегрирования не симметричен относительно нуля.

Метод решения – тот же старый. Представим несобственный интеграл в виде суммы двух несобственных интегралов:

.

Интегралы правой части вам уже знакомы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]