
- •Математика Сборник заданий и упражнений для текущего контроля знаний
- •Содержание
- •Вводная часть
- •В соответствии с гос, предшествующий уровень образования абитуриента должен быть не ниже (полного) среднего общего образования.
- •1. Алгебра высказываний
- •1.1. Аксиоматический метод и его понятийный аппарат
- •1.2. Основные законы математической логики.
- •Операция отрицания, или отрицание высказывания
- •Операция конъюнкции, или конъюнкция высказываний
- •Операция дизъюнкции, или дизъюнкция высказываний
- •Операция эквивалентности, или эквивалентность высказываний.
- •Операция импликации, или импликация высказываний
- •Порядок старшинства операций
- •Задача 2.
- •2. Матрицы.
- •2.1. Алгебра матриц
- •2) Умножение матрицы на число.
- •2.2. Вычисление определителей
- •2.3. Вычисление обратной матрицы
- •6) Проверка:
- •3. Решение системы линейных уравнений
- •3.1. Решение системы линейных уравнений методом подстановки
- •3.2. Решение системы методом почленного сложения (вычитания) уравнений системы
- •3.3. Решение системы по правилу Крамера
- •3.4. Решение системы с помощью обратной матрицы
- •3.5. Решение системы линейных уравнений методом Гаусса (последовательного исключения неизвестных)
- •3.6. Несовместные системы. Системы с общим решением. Частные решения
- •4. Комплексные числа
- •4.1. Понятие комплексного числа
- •4.2. Алгебраическая форма комплексного числа. Алгебра комплексных чисел
- •4.3. Тригонометрическая и показательная формы комплексного числа
- •Возведение комплексных чисел в степень
- •Извлечение корней из комплексных чисел
- •5. Математические формулы и графики
- •5.1. Математические формулы
- •5.2. Графики и основные свойства элементарных функций
- •Как правильно построить координатные оси?
- •График линейной функции
- •График квадратичной, кубической функции, график многочлена
- •Кубическая парабола
- •График функции
- •График гиперболы
- •График показательной функции
- •График логарифмической функции
- •Графики тригонометрических функций
- •Графики обратных тригонометрических функций
- •6. Пределы функций
- •6.1. Основные методы вычисления пределов
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •6.2. Замечательные пределы.
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •7. Производные функций
- •7.1. Производные функций одной переменной.
- •Пример 1
- •Пример 7
- •4) Производная частного функций
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Пример 12
- •Пример 13
- •Решения и ответы:
- •7.1.3. Сложные производные. Логарифмическая производная. Производная степенно-показательной функции
- •Пример 1
- •Сложные производные
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 12
- •Производная степенно-показательной функции
- •Пример 13
- •Пример 14
- •Пример 15
- •Решения и ответы:
- •7.1.4. Производная функции, заданной неявно
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •7.1.5. Производная функции, заданной параметрически.
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Решения и ответы:
- •7.2. Простейшие типовые задачи с производной. Примеры решений
- •Производная функции в точке
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Уравнение касательной к графику функции
- •Пример 5
- •Пример 6
- •Дифференциал функции одной переменной для приближенных вычислений
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Вторая производная
- •Пример 11
- •Пример 12
- •Решения и ответы:
- •7.3. Частные производные. Примеры решений
- •Пример 1
- •Особенности вычисления частных производных
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Приближенные вычисления с помощью дифференциала функции одной переменной
- •Пример 1
- •Пример 2
- •Пример 3
- •Абсолютная и относительная погрешности вычислений
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Приближенные вычисления с помощью полного дифференциала функции двух переменных
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Пример 12
- •Решения и ответы:
- •7.5. Частные производные функции трёх переменных
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Частные производные второго порядка функции трёх переменных
- •Пример 10
- •Пример 11
- •Решения и ответы:
- •8. Интегралы
- •8.1. Неопределенный интеграл. Подробные примеры решений
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Решения и ответы:
- •8.1.1. Метод замены переменной в неопределенном интеграле. Примеры решений
- •Подведение функции под знак дифференциала
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Метод замены переменной в неопределенном интеграле
- •Пример 5
- •Пример 6
- •Пример 11
- •Пример 12
- •Пример 13
- •Пример 14
- •Решения и ответы:
- •8.1.2. Интегрирование по частям. Примеры решений
- •8.1.3. Интегралы от логарифмов Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •8.1.4. Интегралы от экспоненты, умноженной на многочлен
- •Пример 5
- •Пример 12
- •Пример 13
- •Решения и ответы:
- •8.1.7. Интегралы от тригонометрических функций. Примеры решений
- •Пример 1
- •Пример 8
- •Пример 9
- •Пример 10
- •Метод замены переменной
- •Пример 11
- •Пример 12
- •Пример 13
- •Пример 14
- •Пример 15
- •Пример 16
- •Универсальная тригонометрическая подстановка
- •Пример 17
- •Пример 18
- •Пример 19
- •8.1.8. Интегрирование некоторых дробей. Методы и приёмы решения
- •Метод разложения числителя Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Метод подведения под знак дифференциала для простейших дробей
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Метод выделения полного квадрата
- •Пример 9
- •Пример 10
- •Пример 11
- •Пример 12
- •Пример 13
- •Подведение числителя под знак дифференциала
- •Пример 14
- •Пример 15
- •Пример 16
- •8.1.9. Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов
- •Интегрирование правильной дробно-рациональной функции
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 9
- •Решения и ответы:
- •8.1.10. Интегрирование корней (иррациональных функций). Примеры решений
- •Интегралы от корней. Типовые методы и приемы решения
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Интегрирование биномиальных интегралов
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Решения и ответы:
- •8.1.11. Сложные интегралы
- •Последовательная замена переменной и интегрирование по частям Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Метод сведения интеграла к самому себе
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Интегрирование сложных дробей
- •Пример 9
- •Пример 10
- •Пример 14
- •Интегрирование сложных тригонометрических функций
- •Пример 15
- •Пример 16
- •Пример 17
- •Пример 18
- •Пример 19
- •Пример 20
- •Пример 25
- •Решения и ответы:
- •8.2. Определенный интеграл. Примеры решений
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •8.2.1. Замена переменной в определенном интеграле
- •Пример 5
- •Пример 6
- •Пример 7
- •8.2.2. Метод интегрирования по частям в определенном интеграле
- •Пример 8
- •Пример 9
- •Решения и ответы:
- •8.2.3. Как вычислить площадь фигуры с помощью определенного интеграла
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Решения и ответы:
- •8.2.4. Как вычислить объем тела вращения с помощью определенного интеграла?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси ox Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси oy
- •Пример 5
- •Пример 6
- •Пример 7
- •Решения и ответы:
- •8.3. Несобственные интегралы. Примеры решений
- •8.3.1. Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •8.3.2. Несобственные интегралы от неограниченных функций
- •Пример 6
- •Пример 7
- •Пример 8
- •Пример 9
- •Пример 10
- •Пример 11
- •Решения и ответы:
- •8.4. Эффективные методы решения определенных и несобственных интегралов
- •8.4.1. Метод решения определенного интеграла от четной функции по симметричному относительно нуля отрезку
- •Пример 1
- •Пример 2
- •Пример 3
- •Вычисление площади круга с помощью определенного интеграла. Тригонометрическая подстановка
- •Пример 4
- •Пример 5
- •8.4.2. Метод решения определенного интеграла от нечетной функции по симметричному относительно нуля отрезку
- •Пример 6
- •8.4.3. Метод решения несобственного интеграла с бесконечным нижним пределом
- •Пример 7
- •Пример 8
- •8.4.4. Метод решения несобственного интеграла с бесконечными пределами интегрирования
- •Пример 9
- •Пример 10
- •Пример 11
- •8.4.5. Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка
- •Пример 12
- •Пример 13
- •8.4.6. Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования
- •Решения и ответы:
- •Приложение 1. Числа
- •Приложение 2. Упражнения по элементам финансовой математики
- •Литература Основной список
- •Дополнительный список
2.2. Вычисление определителей
В ходе решения задач по высшей математике очень часто возникает необходимость вычислить определитель матрицы. Определитель матрицы фигурирует в линейной алгебре, аналитической геометрии, математическом анализе и других разделах высшей математики. Таким образом, без навыка решения определителей просто не обойтись.
Мы не будем давать строгое математическое определение определителя, и, вообще, будем стараться минимизировать математическую терминологию, так как большинству читателей легче от этого не станет. Наша задача – научить Вас решать определители второго, третьего и четвертого порядка.
Весь материал изложен в простой и доступной форме, и даже полный (пустой) чайник в высшей математике после внимательного изучения материала сможет правильно решать определители.
Определение: Определитель, или детерминант матрицы, – это единственное для данной матрицы число, оно определяется всеми элементами матрицы и характеризует всю матрицу. Определитель можно вычислить только для квадратной матрицы.
Для вектора таким характерным числом является модуль вектора. Для действительного числа произвольного знака таким характерным числом является абсолютное значение, или модуль числа. Но, в отличие от модуля ненулевого вектора или числа, определитель матрицы может иметь любой знак и быть равным нулю, в том числе для ненулевой исходной матрицы.
Обозначение: Определитель матрицы обозначается символом данной матрицы в прямых (одинарных, или двойных) скобках, как у модуля вектора, или D, или Δ, или det(A). Т. е., как |A|, или ||A||, или латинской буквой D, или греческой буквой Δ, или det(A) для матрицы A. При этом вместо A в новые скобки может быть вписана вся таблица.
На практике чаще всего можно
встретить определитель второго порядка,
например:
,
и определитель третьего порядка,
например:
.
Определитель четвертого
порядка
встречается значительно реже, но о нем
тоже поговорим.
Надеюсь, всем понятно следующее: Числа внутри определителя живут сами по себе, и ни о каком вычитании в строке или столбце D речи не идет. Менять местами числа нельзя! Но если очень хочется, то можно... (На самом деле, есть десяток теорем о детерминантах, об условиях, при которых можно переставлять строки и столбцы, но не отдельные элементы, определителя со сменой (или без смены) знака определителя).
Таким образом, если дан определитель, то ничего внутри него не трогаем!
1) Что значит вычислить (найти, раскрыть, решить) определитель? Вычислить определитель – это значит НАЙТИ ЧИСЛО. Знаки вопроса (?) в вышерассмотренных примерах – это совершенно обыкновенные числа.
2) Теперь осталось разобраться в том, КАК найти это число. Как Вы догадываетесь, для этого нужно применить определенные правила, формулы и алгоритмы.
Определитель матрицы «два на два», его формула:
.
ЭТО НУЖНО ЗАПОМНИТЬ, по крайней мере, на время изучения высшей математики в ВУЗе. Сразу рассмотрим пример:
Готово. Самое главное, НЕ ЗАПУТАТЬСЯ В ЗНАКАХ.
Определитель матрицы «три на три», его формула:
Пример:
Приведенная формула определителя «три на три» длинная и допустить ошибку по невнимательности проще простого. Как избежать промахов? Определитель «три на три» можно раскрыть 10 способами (10-ю способами получить приведённую формулу). Четыре из них – «простые», и шесть – «нормальные».
Начнем с четырёх простых способов «параллельных полосок» Саррюса:
1) два способа дополнительных столбцов;
2) два способа дополнительных строк.
Первый способ дополнительных столбцов состоит в том, что справа от определителя приписывают первый и второй столбцы и аккуратно карандашом проводят линии:
.
Заметим, что элементы на «красных» диагоналях входят в формулу со знаком «плюс», а элементы на «синих» диагоналях входят в формулу со знаком минус.
Пример:
Второй способ дополнительных столбцов состоит в том, что слева, перед определителем приписывают второй и третий (ближе к определителю) столбцы и проводят линии, начиная с главной диагонали.
Первый способ дополнительных строк состоит в том, что снизу от определителя приписывают первую (ближе к определителю) и вторую строки и проводят линии, начиная с главной диагонали.
Второй способ дополнительных строк состоит в том, что сверху от определителя приписывают вторую и третью (ближе к определителю) строки и проводят линии, начиная с главной диагонали.
Во всех четырёх простых способах элементы матрицы, находящиеся на «красных» диагоналях, параллельных главной диагонали, входят в формулу со знаком «плюс». Элементы матрицы, находящиеся на «синих» диагоналях, входят в формулу со знаком минус. Вычисления по остальным простым способам проведите самостоятельно.
Сравните решение «по формуле» и «простые решения». Нетрудно заметить, что это ОДНО И ТО ЖЕ, просто во втором случае немного переставлены множители формулы, и, самое главное, вероятность допустить ошибку значительно меньше.
Теперь рассмотрим 6 «нормальных» способов для вычисления определителя. Почему «нормальных» Потому что в подавляющем большинстве случаев определители требуется раскрывать именно так.
Как Вы заметили, у определителя «три на три» три столбца и три строки. Вычислить определитель можно, разложив его по любой строке или по любому столбцу. Таким образом, получается 6 способов, при этом во всех случаях используется алгоритм одного и того же типа (смотрите в книгах по высшей алгебре теорему Лапласа о разложении определителя матрицы по любой строке или столбцу, но мы обещали нашим студентам «не докучать моралью строгой»).
Теорема Лапласа: Определитель матрицы равен сумме произведений элементов строки (столбца) на соответствующие алгебраические дополнения. Страшно?
Все намного проще, будем использовать ненаучный, но понятный подход, доступный даже для человека, далекого от математики.
В следующем примере будем раскрывать определитель по первой строке.
Для этого нам понадобится
«матрица знаков»:
.
Легко заметить, что знаки расположены
в шахматном порядке.
Примечание: Внимание! «Матрица знаков» – это изобретение. Данное понятие не научное, его не нужно использовать в чистовом оформлении заданий, оно лишь помогает вам понять алгоритм вычисления определителя.
Сначала приведём полное решение. Снова берем наш подопытный определитель и проводим вычисления по теореме Лапласа, разложив его по первой строке:
И главный вопрос: КАК из определителя «три на три» получить вот это вот:
?
Итак, определитель «три на три» сводится к решению трёх маленьких определителей, или, как их еще называют, МИНОРОВ. Термин надо запомнить. Минор – маленький, точнее, по смыслу в данном случае, - определитель уменьшенной матрицы.
Коль скоро выбран способ разложения определителя по первой строке, очевидно, что всё вращается вокруг неё. Запишем рядом исходную матрицу и «матрицу знаков», одинаковую для любой матрицы «три на три»:
Элементы обычно рассматривают слева направо (или сверху вниз, если был бы выбран столбец). Сначала разбираемся с первым элементом строки, то есть с единицей:
1) Из матрицы знаков выписываем соответствующий знак:
2) Затем записываем сам элемент:
3) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит первый элемент:
Оставшиеся четыре числа и образуют определитель «два на два», который называется МИНОРОМ данного элемента (единицы).
Переходим ко второму элементу строки.
4) Из матрицы знаков выписываем соответствующий знак:
5) Затем записываем второй элемент:
6) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит второй элемент:
Оставшиеся четыре числа записываем в маленький определитель.
Переходим к третьему элементу первой строки. Никакой оригинальности:
7) Из матрицы знаков выписываем соответствующий знак:
8) Записываем третий элемент:
9) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит третий элемент:
Оставшиеся четыре числа записываем в маленький определитель.
Остальные действия не представляют трудностей, поскольку определители «два на два» мы считать уже умеем. НЕ ПУТАЕМСЯ В ЗНАКАХ!
Аналогично определитель можно разложить по любой строке или по любому столбцу. Естественно, во всех шести случаях ответ получается одинаковым. В этом и состоит ценность теоремы Лапласа!
Определитель «четыре на четыре» можно вычислить, используя этот же алгоритм. При этом матрица знаков у нас увеличится:
В следующем примере раскроем определитель по четвертому столбцу:
Пример:
А как это получилось, попробуйте разобраться самостоятельно. Если кто захочет прорешать определитель до конца, правильный ответ: 18. Для тренировки лучше будет также раскрыть определитель по какому-нибудь другому столбцу или другой строке.