- •Теория автоматического управления
- •Содержание
- •Используемая аббревиатура
- •Введение
- •1. Основные понятия и определения. Задачи теории управления
- •2. Классификация технических систем управления
- •3. Основные элементы, функциональные блоки и функциональные структуры сау
- •4. Модели динамических управляемых объектов
- •4.1 Методы описания и исследования динамических управляемых объектов в частотной и временной области
- •4.2 Статические и динамические характеристики сау
- •4.3 Переходные и импульсные характеристики сау
- •4.4 Уравнение Лагранжа 2-го рода и дифференциальные уравнения объектов управления
- •4.5 Линеаризация сау
- •5. Структурные методы исследования линейных сау
- •5.1 Преобразование Лапласа, передаточные функции и матрицы
- •5.2 Типовые динамические звенья и структурные схемы сау
- •5.3 Способы соединения звеньев. Правила преобразования структурных схем
- •5.4 Представление сау в виде сигнальных графов. Правило Мейсона при преобразовании структурных схем
- •6. Метод частотных характеристик
- •6.1 Частотные передаточные функции
- •6.2 Частотные характеристики сау
- •6.3 Диаграмма Боде. Асимптотические частотные характеристики
- •7. Устойчивость линейных систем управления
- •7.1 Характеристическое уравнение линейной сау
- •7.2 Алгебраические критерии устойчивости
- •7.2.1 Критерий Гурвица Формулировка критерия: автоматическая система, описываемая характеристическим уравнением n-го порядка
- •7.2.2 Критерий Рауса
- •7.3 Частотные критерии устойчивости
- •7.3.1 Критерий Михайлова
- •7.3.2 Критерий Найквиста
- •7.3.3 Структурно устойчивые и структурно неустойчивые системы. Понятие d-разбиения
- •7.3.5 Относительная устойчивость. Запасы устойчивости
- •7.3.6 Устойчивость систем со звеном чистого запаздывания
- •8. Качество систем управления
- •8.1 Прямые показатели качества регулирования
- •8.2 Косвенные показатели качества регулирования
- •8.2.1 Оценка качества регулирования по расположению корней характеристического уравнения
- •8.2.2 Частотные методы оценки качества
- •8.2.3 Оценка качества по лачх разомкнутой сау
- •9. Метод пространства состояний
- •9.1 Векторно-матричное описание сау
- •9.2 Схемы пространства состояний
- •9.3 Понятие матрицы перехода (переходных состояний) и ее применение для исследования сау
- •9.4 Весовая или импульсная переходная матрица
- •9.5 Управляемость и наблюдаемость сау
- •10. Синтез линейных непрерывных сау
- •10.1 Общая постановка задачи синтеза
- •10.2 Типовые параметрически оптимизируемые регуляторы (корректирующие звенья) класса “вход-выход”
- •10.3 Последовательная коррекция сау частотными методами
- •10.3.1 Коррекция с опережением по фазе
- •10.3.2 Коррекция с отставанием по фазе
- •10.3.3 Коррекция введением интеграторов
- •10.4 Синтез систем с подчиненным регулированием координат
- •Методика структурно-параметрического синтеза контуров регулирования сау по желаемой передаточной функции
- •10.6 Синтез сау с апериодической реакцией
- •10.7 Синтез модальных систем управления
- •11. Дискретные и дискретно-непрерывные сау
- •11.1 Дискретизация сигналов и z-преобразование
- •11.2 Дискретные передаточные функции и разностные уравнения
- •11.3 Синтез цифровых систем управления
- •11.3.1 Метод дискретизации аналоговых регуляторов класса “вход - выход”
- •11.3.2 Метод переменного коэффициента усиления
- •11.3.3 Метод синтеза апериодических дискретно-непрерывных
- •Синтез свободного движения сау
- •Синтез вынужденного сау
- •Литература
8.2.1 Оценка качества регулирования по расположению корней характеристического уравнения
Одним из косвенных показателей качества систем управления является степень удаленности корней характеристического уравнения замкнутой САУ от мнимой оси комплексной плоскости. Пусть ближайшие к мнимой оси комплексно-сопряженные корни устойчивой системы имеют значение
. (8.1)
Расстояние
(рис. 8.2) ближайших к мнимой оси
комплексно-сопряженных корней называется
степенью устойчивости системы.
Угол φ, образуемый лучами, проведенными из начала координат через эти корни, характеризует колебательность системы. Степенью колебательности системы (коэффициентом затухания колебаний) называют количественную характеристику, определяемую выражением
. (8.2)
Чтобы система обладала
заданной колебательностью, все корни
характеристического уравнения должны
вписываться в угол 2φ (см. рис. 8.2).
Для большинства систем управления
допустимое перерегулирование
не должно превышать (10…20)%, что соответствует
m=0,2…0,5.
Рис. 8.2 Область расположения корней
с заданными показателями и
При корневых методах оценки качества системы, т. е. по расположению корней характеристического полинома, исходят из следующих соображений.
Решение однородного уравнения, характеризующего свободное движение системы, представляет собой сумму затухающих экспонент вида (7.2). Полагая, что качество САУ в основном определяется ближайшим к мнимой оси вещественным корнем или ближайшей к мнимой оси парой комплексно-сопряженных корней (доминирующих корней), можно записать
.
Полагая, что зона δ установления
переходного процесса составляет (2…5)%
от установившегося значения
,
можно найти требуемое соотношение
степени устойчивости
системы и времени регулирования tр:
. (8.3)
Следовательно, задаваясь временем регулирования, можно рассчитать минимальное (по модулю) значение вещественных частей корней характеристического уравнения.
Аналогично можно связать степень колебательности m системы со степенью затухания колебаний. Пусть по условиям технологии требуется, чтобы каждая последующая амплитуда колебаний затухала в k раз по сравнению с предыдущей. Тогда
. (8.4)
Пусть k=10, тогда в соответствие с (8.4) получим m=0,336 и
.
Таким образом, задаваясь временем
регулирования
и соотношением амплитуд колебаний k,
можно определить допустимую область
расположения корней на комплексной
плоскости или решить обратную задачу
расчета параметров
и k переходного процесса
по расположению доминирующих корней
характеристического уравнения. Следует
отметить, что данный подход дает
приемлемую точность оценки качества
регулирования, если действительные
части остальных корней характеристического
уравнения больше действительной части
доминирующих корней, по крайней мере,
в 5 раз [2].
Для построения в плоскости параметров областей, обеспечивающих требуемые показатели качества регулирования целесообразно использовать метод D-разбиения. В качестве примера используем уравнение Вышнеградского, описывающего в параметрической форме характеристический полином 3-го порядка,
. (8.5)
где A и B – обобщенные параметры характеристического уравнения.
Подставим выражение для комплексного
корня
в (8.5). Тогда получим
.
Приравнивая нулю вещественную и мнимую части, получим
,
(8.6)
Полагая
в (8.6), получим границу области
устойчивости системы в параметрической
форме
(8.7)
или
-
уравнение гиперболы Вышнеградского
(кривая 1, рис. 8.3).
Рис. 8.3 Границы областей устойчивости,
колебательности и апериодичности на
диаграмме Вышнеградского
Полагая
в (8.6), получим границу области
апериодичности системы в параметрической
форме (кривые 2 и 3 на рис. 8.3)
.
Поскольку на кривой 1 ω ≠ 0, а на кривых 2 и 3 ω = 0, то области I и III являются областями комплексных, а область II – вещественных корней (см. рис. 8.3). Следовательно, если параметры A, B принадлежат области II, то переходные процессы имеют апериодический характер, причем, чем эти параметры больше, тем процессы более затянуты. Если параметры принадлежат области I, то переходные процессы имеют колебательный характер, причем, чем больше A и меньше B, тем выше колебательность. Область III является областью монотонности решения однородного дифференциального уравнения, соответствующего (8.5), а, следовательно, переходные процессы, имея колебательный характер, тем не менее, затухают монотонно (без перерегулирования).
Диаграмма Вышнеградского [1, 2] помимо приведенных кривых содержит кривые равных вещественных частей комплексных корней (равной степени устойчивости), причем для двух случаев расположения корней, когда ближайшими к мнимой оси являются комплексные корни и, когда ближайшим к мнимой оси расположен вещественный корень (на рис. 8.3 эти кривые не показаны). В частности, на границе областей I и III (кривая 4) все три корня равно удалены от мнимой оси.
Требования повысить быстродействие и одновременно снизить перерегулирование в системе являются противоречивыми друг другу, что заставляет искать компромисс. В общем случае, с точки зрения переходного процесса наилучшей считается САУ, у которой все корни характеристического уравнения n-го порядка равны друг другу (на практике редко реализуется), т. е.
,
i=1, 2, 3…n.
В этом случае перерегулирование не превышает 10%, а время нарастания регулирования является минимальным.
Если все корни являются вещественными,
то система характеризуется отсутствием
перерегулирования, т. е. апериодическими
переходными процессами. Время регулирования
будет тем меньше, чем меньше
среднегеометрический корень
или, иначе, чем ближе к мнимой оси
расположен центр корней.
При анализе качества системы корневыми методами необходимо учитывать влияние нулей передаточной функции на переходный процесс.
Прежде всего, нужно проверить, насколько близки нули к полюсам.
Если нуль и полюс совпадают, то их нужно сократить, и они не будут влиять на качество системы. Порядок системы при этом, естественно, будет понижен.
Если полюсы и нули передаточной функции не совпадают, то полюсы определяют отдельные составляющие переходного процесса (апериодические и гармонические), а нули определяют удельный вес каждой из этих составляющих. Чем ближе нуль передаточной функции расположен к какому-либо полюсу, тем меньше его вклад в переходную характеристику составляющей, соответствующей данному полюсу.
