
- •Математика Линейная алгебра
- •Рецензенты:
- •3.6. Операции над векторами 42
- •5.6. Упражнения 91
- •Предисловие
- •1. Числовые кольца и поля. Комплексные числа
- •1.1. Основные понятия
- •1.2. Поле комплексных чисел
- •1.3. Модуль и аргумент комплексного числа. Геометрическое изображение комплексных чисел
- •1.4. Различные формы записи комплексного числа
- •1.5. Действия над комплексными числами в алгебраической форме
- •1.6. Действия над комплексными числами в тригонометрической форме
- •1.7. Действия над комплексными числами в показательной форме
- •1.8. Упражнения
- •1.9. Контрольные задания
- •1.10. Типовой расчет
- •1.11. Вопросы для самопроверки
- •1.12. Вопросы для теоретического опроса
- •2. Многочлены
- •2.1. Действия над многочленами
- •1. Сложение многочленов.
- •2. Умножение многочленов.
- •3. Деление многочленов без остатка.
- •4. Деление многочленов с остатком.
- •2.2. Схема Горнера
- •2.3. Корни многочлена
- •2.3.1. Разложение многочлена степени n на множители
- •2.3.2. Вычисление корней многочленов второй и третьей степени
- •1. Уравнения второй степени (квадратные)
- •2.4. Упражнения
- •2.5. Контрольные задания
- •2.6. Вопросы для самопроверки
- •2.7. Вопросы для теоретического опроса
- •Действия над многочленами.
- •Вычисление корней многочленов второй и третьей степени.
- •3. Линейные (векторные) пространства
- •3.1. Понятие вектора
- •3.2. Операции над векторами
- •1. Операция сложения векторов.
- •2. Операция вычитания векторов.
- •3. Умножение вектора на число.
- •4. Деление коллинеарных векторов.
- •Свойства деления:
- •3.3. Разложение вектора по ортам координатных осей
- •3.4. Скалярное произведение векторов.
- •Выражение скалярного произведения в произвольных и ортонормированных координатах.
- •3.6. Операции над векторами
- •3.7. Линейная зависимость векторов.
- •3.8. Базис и ранг системы векторов
- •3.9. Переход от одного базиса к другому. Метод замещения
- •3.10. Линейные пространства
- •3.11. Евклидовы и унитарные пространства
- •3.12. Норма вектора
- •3.13. Нормирование ненулевого вектора
- •3.14. Ортонормированные системы векторов
- •3.15. Упражнения
- •3.16. Контрольные задания
- •3.17. Типовой расчет
- •3.18. Вопросы для самопроверки
- •3.19. Вопросы для теоретического опроса
- •Переход от одного базиса к другому. Метод замещения.
- •Ортонормированные системы векторов.
- •4. Матрицы
- •4.1. Основные понятия
- •4.2 Операции над матрицами
- •Сложение матриц.
- •Умножение матрицы на число.
- •Разность матриц.
- •Умножение матриц.
- •Возведение в степень матриц.
- •Транспонирование матриц.
- •4.3. Применение элементов линейной алгебры в экономике.
- •4.4. Упражнения
- •4.5. Контрольные задания
- •Найти значение матричного многочлена , если задана матрица a.
- •4.6. Типовой расчет
- •4.7. Вопросы для самопроверки
- •4.8. Вопросы для теоретического опроса
- •5. Определители квадратных матриц
- •5.1. Перестановки
- •5.2. Определители (детерминанты) квадратных матриц
- •5.3. Свойства определителей
- •5.4. Теорема Лапласа (вычисление определителя n-ого порядка).
- •5.5. Основные методы вычисления определителя n–го порядка
- •Приведение определителя к треугольному виду.
- •5.6. Упражнения
- •5.7. Контрольные задания
- •5.8. Типовой расчет
- •5.9. Вопросы для самопроверки
- •5.10. Вопросы для теоретического опроса
- •6. Ранг матрицы
- •6.1. Основные понятия
- •6.2. Методы нахождения ранга матрицы.
- •1. Метод окаймляющих миноров
- •2. Метод элементарных преобразований
- •6.3. Упражнения
- •6.4. Контрольные задания
- •6.5. Типовой расчет
- •6.6. Вопросы для самопроверки
- •6.7. Вопросы для теоретического опроса
- •7. Обратная матрица
- •7.1. Основные понятия
- •7.2. Методы нахождения обратной матрицы
- •7.2.1. Нахождение обратной матрицы с помощью присоединенной матрицы.
- •7.2.2. Нахождение обратной матрицы методом замещения
- •7.3. Упражнения
- •7.4. Контрольные задания
- •7.5. Типовой расчет
- •7.6. Вопросы для самопроверки
- •7.7. Вопросы для теоретического опроса
- •Нахождение обратной матрицы с помощью присоединенной матрицы.
- •Нахождение обратной матрицы методом замещения.
- •8. Системы линейных уравнений (слу)
- •8.1. Неоднородные системы уравнений
- •8.2. Исследование систем линейных уравнений
- •8.3. Решение системы линейных уравнений в общем случае
- •Правило нахождения решения слу в общем случае
- •8.4. Решение систем n линейных уравнений c n неизвестными
- •8.4.1. Решение систем n линейных уравнений c n неизвестными методом Крамера
- •8.4.2. Решение систем n линейных уравнений c n неизвестными методом обратной матрицы
- •8.5. Решение систем m линейных уравнений c n неизвестными
- •8.5.1. Решение систем линейных уравнений методом Гаусса (метод последовательного исключения неизвестных)
- •8.5.2. Решение систем линейных уравнений методом замещения
- •8.6. Системы линейных однородных уравнений (ослу)
- •Правило нахождения фср ослу
- •8.7. Структура общего решения неоднородной линейной системы
- •8.8. Использование систем линейных уравнений в экономике
- •8.8.1. Прогноз выпуска продукции по запасам сырья
- •8.8.2. Модель Леонтьева многоотраслевой экономики (балансовый анализ) Балансовые соотношения
- •Линейная модель межотраслевой экономики
- •Продуктивные модели Леонтьева
- •8.9. Упражнения
- •8.10. Контрольные задания
- •8.11. Типовой расчет
- •8.12. Вопросы для самопроверки
- •8.13. Вопросы для теоретического опроса
- •9. Линейные операторы (линейные преобразования)
- •9.1. Линейный оператор и его матрица
- •9.2. Линейное преобразование в координатах
- •9.3. Зависимость между матрицами одного и того же преобразования в различных базисах. Подобные матрицы
- •9.4. Действия над линейными операторами
- •9.5. Оператор, сопряженный данному
- •9.6. Собственные значения и собственные векторы линейного оператора (матрицы)
- •9.7. Приведение матрицы линейного преобразования к диагональному виду
- •9.8. Упражнения
- •9.9. Контрольные задания
- •9.10. Типовой расчет
- •9.11. Вопросы для самопроверки
- •9.12. Вопросы для теоретического опроса
- •10. Билинейные и квадратичные формы
- •10.1 Ортогональные и симметрические матрицы
- •10.2. Билинейная и квадратичная формы
- •10.3. Квадратичные формы
- •10.4. Преобразование квадратичной формы при линейном преобразовании переменных
- •10.5. Приведение квадратичной формы к каноническому виду
- •10.6. Закон инерции квадратичных форм
- •10.7. Знакоопределенные квадратичные формы
- •10.8. Упражнения
- •10.9. Контрольные задания
- •10.5. Вопросы для самопроверки
- •10.6. Вопросы для теоретического опроса
- •11. Численные методы линейной алгебры
- •11.1. Метод Гаусса
- •11.2. Уточнение решения методом итераций
- •11.3. Метод прогонки
- •11.4. Итерационные методы решения слау
- •11.4.1. Метод простой итерации
- •11.4.2. Метод Зейделя
- •11.5. Упражнения
- •11.6. Контрольные задания
- •11.7. Типовой расчет
- •11.8. Вопросы для самопроверки
- •11.9. Вопросы для теоретического опроса
8.8.2. Модель Леонтьева многоотраслевой экономики (балансовый анализ) Балансовые соотношения
Предположим, что производственная сфера хозяйства представляет собой n отраслей, каждая из которых производит свой однородный продукт. Для обеспечения своего производства каждая отрасль нуждается в продукции других отраслей (производственное потребление). Обычно процесс производства рассматривается за некоторый период времени (например, год).
Обозначим:
общий
(валовой) объем продукции i-ой
отрасли
объем
продукции i-ой
отрасли, потребляемый j-ой
отраслью при производстве объема
продукции
.
объем
продукции i-ой
отрасли, предназначенный для реализации
в непроизводственной сфере (потребление
граждан, содержание государственных
институтов, удовлетворение общественных
потребностей и т.д.) – вектор конечного
потребления.
Валовой объем продукции любой i-ой отрасли должен быть равным сумме объемов потребления в производственной и непроизводственной сферах, т.е.
Эти уравнения называются соотношениями баланса.
Так как продукция разных отраслей имеет разные измерения, то будем иметь в виду стоимостной баланс.
Линейная модель межотраслевой экономики
Введем
коэффициенты прямых затрат:
(
),
показывающие затраты продукции i-ой
отрасли на производство единицы продукции
j-ой
отрасли. В некоторые промежутки времени
коэффициенты
будут постоянными и могут быть рассмотрены
как постоянные числа (технология
производства остается на одном и том
же уровне довольно длительное время).
Это означает линейную
зависимость материальных затрат от
валового выпуска:
.
Поэтому построенная модель многоотраслевого (межотраслевого) баланса получила название линейной.
Теперь
соотношения баланса:
Обозначим:
где
X – вектор валового выпуска
Y – вектор конечного продукта
А – матрица прямых затрат
Таким образом, систему уравнений, выражающих соотношения баланса можно записать в виде матричного уравнения:
,
называемое уравнением линейного межотраслевого баланса (модель Леонтьева).
Используют его в 2-х случаях:
1) известен вектор валового выпуска Х, требуется рассчитать вектор конечного потребления Y.
2) для планирования известен вектор конечного потребления Y и требуется определить вектор Х валового выпуска.
Продуктивные модели Леонтьева
Перепишем уравнение линейного межотраслевого баланса в виде:
.
Определение.
Матрица А
называется продуктивной,
если для любого вектора Y
с неотрицательными компонентами (
)
существует решение
(вектор Х
с неотрицательными компонентами)
уравнения
.
В этом случае модель Леонтьева также называется продуктивной.
Если
существует обратная матрица
,
то существует и единственное решение
уравнения
:
.
Определение.
Матрица
называется матрицей
полных затрат.
Существует
несколько критериев продуктивности
матрицы А.
Один из них говорит, что матрица А
продуктивна, если максимум сумм элементов
ее столбцов не превосходит единицы,
причем хотя бы для одного из столбцов
сумма элементов строго меньше единицы,
т.е.
,
и
j,
что
Пример. Приведены данные об использовании баланса за отчетный период (усл.ден.ед.):
|
Отрасль |
Потребление
|
Конечный продукт
|
Валовой выпуск
|
|
1 |
2 |
||||
1 |
Энергетика |
7 |
21 |
72 |
100 |
2 |
Машиностроение |
12 |
15 |
123 |
150 |
Вычислить необходимый объем валового выпуска Х каждой отрасли, если конечное потребление энергетической отрасли увеличится вдвое, а машиностроение сохранится на прежнем уровне.
Решение.
Имеем:
Найдем коэффициенты прямых затрат по формуле :
или
.
Таким
образом, матрица прямых затрат
имеет неотрицательные элементы и
удовлетворяет критерию продуктивности:
.
Найдем
;
По
условию вектор конечного продукта
.
Тогда
,
т.е. валовой выпуск надо увеличить:
в энергетики – до 179 усл.ед.,
в машиностроение – до 160,5.