
- •Развитие физической культуры в Древней Греции
- •Физическая культура в средние века (V-хvіі вв.)
- •Основные направления физкультуры в настоящее время
- •1) Группы лфк при диспансерах, больницах; 2) группы здоровья в коллективах физической культуры, на физкультурно-спортивных базах и т.Д.; 3) самостоятельные занятия.
- •Понятие «физическая культура» , «физическое воспитание» , «спорт»
- •Соединения костей
- •Строение поперечно-полосатой мышечной ткани
- •Механизм мышечного сокращения
- •Механизмы регуляции силы мышечного сокращения
- •Роль рефлексов в мышечной системе
- •Энергическое обеспечение мышечного сокращения
- •Кислородный и бескислородный пути синтеза атф
- •Понятия дыхания и его этапы
- •Внешнее дыхание при мышечной деятельности
- •Транспорт кислорода кровью
Строение поперечно-полосатой мышечной ткани
Исчерченная (поперечно-полосатая, скелетная) мышечная ткань образована цилиндрическими мышечными волокнами длиной от 1 мм до 4 см и более и толщиной до 0,1 мм. Каждое волокно представляет собой комплекс, состоящий из миосимпласта и миосателлитоцитов, покрытых плазматической мембраной, которую называют сарколеммой (от греч. sагkos - мясо). Снаружи к сарколемме прилежит базальная пластинка (мембрана), образованная тонкими коллагеновыми и ретикулярными волокнами. Миосимпласт, находящийся под сарколеммой мышечного волокна, получил название саркоплазмы. Он состоит из множества эллипсоидных ядер (до 100), миофибрилл и цитоплазмы. Удлиненные ядра, ориентированные вдоль мышечного волокна, лежат под сарколеммой. В саркоплазме имеется большое количество элементов зернистой эндоплазматической сети. Примерно 2/З сухой массы мышечного волокна приходится на цилиндрические миофибриллы, проходящие продольно почти через всю саркоплазму. Между миофибриллами располагаются многочисленные митохондрии с хорошо развитыми кристами и гликоген. Саркоплазма богата белком миоглобином, который, подобно гемоглобину, может связывать кислород. В зависимости от толщины волокон, содержания в них миоглобина и миофибрилл различают так называемые красные и белые поперечнополосатые мышечные волокна. Красные мышечные волокна (темные) богаты саркоплазмой, миоглобином и митохондриями, однако в них мало миофибрилл. Эти волокна медленно сокращаются и долго могут быть в сокращенном (рабочем) состоянии. Белые мышечные (светлые) волокна содержат мало саркоплазмы, миоглобина и митохондрий, но в них много миофибрилл. Эти волокна сокращаются быстрее красных, но быстро «устают». У человека мышцы содержат оба типа волокон. Сочетание медленных (красных) и быстрых (белых) мышечных волокон обеспечивает мышцам быстроту реакции (сокращение) и длительную работоспособность.
Механизм мышечного сокращения
В покоящихся мышечных волокнах при отсутствии импульсации мотонейрона поперечные миозиновые мостики не прикреплены к актиновым миофиламентам. Тропомиозин расположен таким образом, что блокирует участки актина, способные взаимодействовать с поперечными мостиками миозина. Тропонин тормозит миозин — АТФ-азную активность и поэтому АТФ не расщепляется. Мышечные волокна находятся в расслабленном состоянии.
При сокращении мышцы длина А-дисков не меняется, J-диски укорачиваются, а Н-зона А-дисков может исчезать. Эти данные явились основой для создания теории, объясняющей сокращение мышцы механизмом скольжения (теорией скольжения) тонких актиновых миофиламентов вдоль толстых миозиновых. В результате этого миозиновые миофиламенты втягиваются между окружающими их актиновыми. Это приводит к укорочению каждого саркомера, а значит, и всего мышечного волокна.
Механизмы регуляции силы мышечного сокращения
Управление движениями, поддержание вертикального положения и необходимая фиксация звеньев тела обеспечиваются сокращением в нужный момент времени определенных мышц и регуляцией степени их напряжения центральной нервной системой.
Регуляция мышечного напряжения осуществляется тремя физиологическими механизмами:
1) количеством активных ДЕ мышцы;
2) частотой импульсации мотонейронов ДЕ (т. е. режимом их работы);
3) временной связью активности ДЕ.
ДЕ активизируется после того, как ее мотонейрон пошлет импульсы для сокращения иннервируемых мышечных волокон.
Двигательные единицы возбуждаются мотонейронами по физиологическому закону «все или ничего». Поэтому на нервный импульс реагируют одновременно все мышечные волокна одной ДЕ. Сила сокращения одной ДЕ зависит от количества составляющих ее мышечных волокон. Малые ДЕ развивают силу всего лишь в несколько мил-линьютон, а ДЕ с большим количеством волокон - в несколько ньютон. Как видно, силовой потенциал одной ДЕ невелик, поэтому для выполнения движения при сокращении мышцы одновременно «включаются» в работу несколько ДЕ, что в физиологии получило название «пространственной суммации». Чем выше внешнее сопротивление, тем больше ДЕ задействовано при генерации силы мышцей, и тем большее напряжение она развивает.
Необходимое число активных ДЕ определяется интенсивностью возбуждающих влияний более высоких уровней нервной системы на мотонейроны данной мышцы.
Реакция мотонейронов ДЕ на возбуждающие влияния более высоких уровней нервной системы определяется порогом их возбуждения. Сам этот порог зависит от размера мотонейрона. Чем меньше размер тела мотонейрона, тем ниже порог его возбуждения и меньше размер ДЕ Поэтому слабые мышечные напряжения обеспечиваются преимущественно активностью низкопороговых - малых и медленных ДЕ
В естественных условиях сокращение ДЕ работающих мышц обусловлено не одиночными нервными импульсами, а их сериями с различной частотой - от 5 до 50 в одну секунду. При этом, когда каждый последующий нервный импульс подается до окончания фазы расслабления мышцы от воздействия предыдущего, то последующее за импульсом сокращение мышцы накладывается на предыдущее. В итоге происходит более высокое развитие силы. Когда нервные импульсы генерируются мотонейроном с высокой частотой, то спада напряжения мышц или развиваемой ими силы не происходит. При этом достигаются более сильные, чем при одиночных импульсах, сокращения мышечных волокон и 3-4-кратное увеличение развиваемой силы. Такое сокращение мышц называется тетаническим