
- •1.1. Термины и определения электрики
- •1.2. Потребители электрической энергии
- •1.3. Уровни (ступени) системы электроснабжения
- •1.4. Основные требования к системам электроснабжения
- •1.5. Системное описание электрического хозяйства
- •2.1. Характерные электроприемники
- •2.2. Параметры электропотребления и расчетные коэффициенты
- •2.3. Формализуемые методы расчета электрических нагрузок
- •2.4. Определение электрических нагрузок комплексным методом
- •2.5. Пользование электрической энергией
- •3.1. Схемы присоединения и выбор питающих напряжений
- •3.2. Определение заводских источников питания и построение схемы электроснабжения
- •3.3. Надежность электроснабжения потребителей
- •3.4. Выбор места расположения источников питания
- •4.1. Исходные данные и выбор схемы гпп
- •4.2. Выбор и использование силовых трансформаторов
- •4.3. Схемы блочных подстанций пятого уровня
- •4.4. Схемы печных и нетиповых подстанций
- •4.5. Компоновки открытых и закрытых распределительных устройств (подстанций)
- •5.1. Цеховые подстанции третьего уровня системы электроснабжения
- •5.2. Выбор трансформаторов для цеховых подстанций
- •5.3. Размещение подстанций зур и распределительных устройств 2ур
- •5.4. Преобразовательные установки и подстанции
- •6.1. Общие сведения о способах канализации
- •6.2. Воздушные линии
- •6.3. Кабельные линии
- •6.4. Кабельная канализация
- •6.5. Токопроводы
- •7.1. Короткое замыкание в симметричной трехфазной цепи промышленного предприятия
- •7.2. Вычисление значений токов короткого замыкания в электроустановках свыше 1 кВ
- •7.3. Короткое замыкание в сетях напряжением до 1 кВ
- •8.1. Выбор аппаратов по номинальным параметрам
- •8.2. Выбор высоковольтных выключателей (ячеек)
- •8.3. Выбор разъединителей, отделителей, короткозамыкателей
- •8.4. Выбор выключателей нагрузки и предохранителей
- •8.5. Выбор реакторов
- •8.6. Выбор трансформаторов тока и трансформаторов напряжения
- •8.7. Проверка токоведущих устройств на термическую и динамическую стойкость
- •9.1. Общая характеристика асинхронных электродвигателей с короткозамкнутым ротором
- •9.2. Пуск и самозапуск асинхронных электродвигателей
- •9.3. Общая характеристика синхронных электродвигателей
- •9.4. Пуск и самозапуск синхронных электродвигателей
- •10.1. Показатели качества электроэнергии и их нормирование
- •10.2. Измерение и расчет параметров качества электроэнергии
- •10.3. Регулирование напряжения
- •10.4. Симметрирование нагрузок
- •11.1. Реактивная мощность в системах электроснабжения
- •11.2. Технические характеристики источников реактивной мощности
- •11.3. Экономические характеристики источников и затраты на передачу реактивной мощности
- •11.4. Оптимизация компенсации реактивной мощности
- •11.5. Выбор компенсирующих устройств на основе нормативных документов
- •12.1. Классификация электротехнических установок относительно мер электробезопасности
- •12.2. Заземляющие устройства
- •12.3. Расчет заземляющих устройств
- •12.4. Расчет молниезащитных устройств зданий и сооружений
- •13.1. Виды учета электроэнергии
- •13.2. Технические средства учета и контроля расхода электроэнергии
- •13.3. Регулирование электропотребления предприятий
- •13.4. Электробалансы на промышленных предприятиях
- •13.5. Экономия электроэнергии в промышленности
- •14.1. Проектирование как форма инженерной деятельности
- •14.2. Стадии проектирования и состав документации электрической части
- •14.3. Принципы создания системы автоматизированного проектирования электрической части сапр-электро
- •14.4. Задачи и структура сапр-Электро различных стадий проектирования
- •1. Электроснабжение
- •2. Силовое электрооборудование и освещение
- •15.1. Методика определения технико-экономической эффективности капитальных вложений
- •15.2. Стоимость элементов систем электроснабжения
- •15.3. Технико-экономические расчеты при реконструкции
- •15.4. Учет фактора времени в технико-экономических расчетах
- •15.5. Определение экономической эффективности использования систем автоматизированного проектирования
- •16.1. Принципы организации управления системами электрики
- •16.2. Организация эксплуатации и ремонта системы электроснабжения
- •16.3. Организация электроремонта силового электрооборудования
- •16.4. Определение численности электротехнического персонала
- •16.5. Оптимизация структуры оборудования, образующего электрическое хозяйство
11.5. Выбор компенсирующих устройств на основе нормативных документов
Вопросы компенсации реактивной мощности регламентируются, но на начальной стадии проектирования определяются лишь суммарные расчетные активная и реактивная мощности электрических нагрузок предприятия при естественном коэффициенте мощности с учетом ожидаемых потерь мощности в элементах системы электроснабжения: рр и Qp. Наибольшая суммарная реактивная мощность предприятия в период максимума нагрузок в электрической системе определяется по формуле
где kнс — коэффициент, учитывающий несовпадение по времени наибольшей активной нагрузки в электрической системе и реактивной мощности предприятия и принимаемый по отраслям промышленности.
Значения реактивной Qmax и активной Рр нагрузок сообщаются в энергосистему для определения экономически обоснованной реактивной мощности, которую можно передать предприятию в режимах наибольшей и наименьшей активных нагрузок энергосистемы (соответственно Qэ1 и Qэ2). По реактивной мощности Qэ1 определяется суммарная мощность компенсирующих устройств предприятия, а по мощности Qэ2 - регулируемая часть компенсирующих устройств.
Суммарная мощность компенсирующих устройств QK, определяемая из баланса реактивной мощности на 6УР в период наибольшей активной нагрузки электрической системы,
Для промышленного предприятия с присоединенной мощностью менее 750 кВ • А значение мощности компенсирующих устройств Qk задается непосредственно электрической системой и является обязательным при выполнении проекта системы электроснабжения мини-предприятия.
При выборе средств компенсации реактивной мощности в системах электроснабжения промышленных предприятий в зависимости
от состава их нагрузки различают две группы промышленных сетей:
1) общего назначения с синусоидальным и симметричным режимом;
2) со специфическими нелинейными, несимметричными и резкопеременными нагрузками.
В сетях общего назначения в качестве средств компенсации используются батареи конденсаторов до 1 кВ и выше и синхронные электродвигатели. В сетях со специфическими нагрузками кроме указанных применяются фильтрокомпенсирующие устройства, симметрирующие и фильтросимметрирующие устройства, устройства динамической компенсации с быстродействующими системами управления и специальные быстродействующие синхронные компенсаторы.
Распределение найденной суммарной мощности компенсирующих устройств (Qk по уровням системы энергоснабжения осуществляется по критерию минимума суммарных расчетных затрат на производство и передачу реактивной мощности. Теоретической базой такого распределения могут служить оптимизационная модель задачи и изложенные общие закономерности компенсации реактивной мощности.
Электрические сети 2УР наиболее удалены от источников электроэнергии, и к ним подключается большая часть приемников 1УР, потребляющих реактивную мощность. Коэффициент мощности нагрузки до 1 кВ не превышает 0,7—0,8. Выбор мощности компенсирующих устройств для 2УР, ЗУР (в основном батарей конденсаторов) производится совместно с выбором числа и мощности трансформаторов цеховых подстанций. Первоначальным ориентиром для выбора компенсирующих устройств до 1 кВ может служить тангенс угла суммарной расчетной мощности предприятия после компенсации реактивной мощности.
При условии постоянства тангенса угла мощность компенсирующих устройств QK.н определяется отношением
где ph и Qн — суммарная расчетная активная и реактивная мощности низковольтных потребителей электроэнергии.
Если за счет дополнительных компенсирующих устройств по сравнению с определенными по формуле (11.26) удается уменьшить число трансформаторов цеховых ТП, то это всегда экономически оправдано. В других случаях мощность компенсирующих устройств определяется с учетом полного использования выбранных трансформаторов цеховых подстанций. Суммарная мощность батарей конденсаторов до 1 кВ, разделяемая между отдельными трансформаторами цеха, пропорциональна их реактивным нагрузкам.
После выбора компенсирующих устройств в электрических сетях до 1 кВ суммарная мощность компенсирующих устройств для 4УР
в сети 6—10 кВ Qк.в определяется однозначно:
Мощность Qк.в необходимо распределить по видам компенсирующих устройств (синхронные двигатели или батареи конденсаторов) и местам их присоединения. Основой для такого распределения являются оптимизационные технико-экономические расчеты по критерию минимума суммарных расчетных затрат.
Предлагаются следующие практические рекомендации: 1) синхронные двигатели с частотой вращения ротора 1000 об/мин и более и мощностью Рном 1000 кВт, как правило, экономически целесообразно полностью использовать в качестве источников реактивной мощности; 2) синхронные двигатели с частотой вращения ротора до 375 об/мин экономически нецелесообразно использовать в качестве источников реактивной мощности. Рекомендуется для таких двигателей режим при cos = 1; 3) синхронные двигатели с частотой вращения ротора 750 и 500 об/мин экономически оправданно использовать в качестве источников реактивной мощности на 30 —70%, причем большая нагрузка по реактивной мощности соответствует двигателям большей номинальной мощности; 4) суммарная мощность высоковольтных батарей конденсаторов определяется разностью между мощностью компенсирующих устройств в сети 6—10 кВ и экономически оправданной реактивной мощностью высоковольтных синхронных двигателей.
Вопросы для самопроверки
1. Каков физический смысл реактивной мощности и каковы ее источники в системах электроснабжения?
2. Выполните баланс реактивной мощности по уровням системы электроснабжения промышленных предприятий.
3. Сравните технические характеристики синхронных машин и батарей конденсаторов как источников реактивной мощности.
4. Обоснуйте экономическую необходимость компенсации реактивной мощности и энергии.
5. Назовите критерии оптимизации компенсации реактивной мощности.
6. Опишите особенности выбора компенсирующих устройств на основе нормативных документов.
ГЛАВА ДВЕНАДЦАТАЯ
ЗАЗЕМЛЕНИЕ И ЗАЩИТНЫЕ МЕРЫ ЭЛЕКТРОБЕЗОПАСНОСТИ