
- •1.1. Термины и определения электрики
- •1.2. Потребители электрической энергии
- •1.3. Уровни (ступени) системы электроснабжения
- •1.4. Основные требования к системам электроснабжения
- •1.5. Системное описание электрического хозяйства
- •2.1. Характерные электроприемники
- •2.2. Параметры электропотребления и расчетные коэффициенты
- •2.3. Формализуемые методы расчета электрических нагрузок
- •2.4. Определение электрических нагрузок комплексным методом
- •2.5. Пользование электрической энергией
- •3.1. Схемы присоединения и выбор питающих напряжений
- •3.2. Определение заводских источников питания и построение схемы электроснабжения
- •3.3. Надежность электроснабжения потребителей
- •3.4. Выбор места расположения источников питания
- •4.1. Исходные данные и выбор схемы гпп
- •4.2. Выбор и использование силовых трансформаторов
- •4.3. Схемы блочных подстанций пятого уровня
- •4.4. Схемы печных и нетиповых подстанций
- •4.5. Компоновки открытых и закрытых распределительных устройств (подстанций)
- •5.1. Цеховые подстанции третьего уровня системы электроснабжения
- •5.2. Выбор трансформаторов для цеховых подстанций
- •5.3. Размещение подстанций зур и распределительных устройств 2ур
- •5.4. Преобразовательные установки и подстанции
- •6.1. Общие сведения о способах канализации
- •6.2. Воздушные линии
- •6.3. Кабельные линии
- •6.4. Кабельная канализация
- •6.5. Токопроводы
- •7.1. Короткое замыкание в симметричной трехфазной цепи промышленного предприятия
- •7.2. Вычисление значений токов короткого замыкания в электроустановках свыше 1 кВ
- •7.3. Короткое замыкание в сетях напряжением до 1 кВ
- •8.1. Выбор аппаратов по номинальным параметрам
- •8.2. Выбор высоковольтных выключателей (ячеек)
- •8.3. Выбор разъединителей, отделителей, короткозамыкателей
- •8.4. Выбор выключателей нагрузки и предохранителей
- •8.5. Выбор реакторов
- •8.6. Выбор трансформаторов тока и трансформаторов напряжения
- •8.7. Проверка токоведущих устройств на термическую и динамическую стойкость
- •9.1. Общая характеристика асинхронных электродвигателей с короткозамкнутым ротором
- •9.2. Пуск и самозапуск асинхронных электродвигателей
- •9.3. Общая характеристика синхронных электродвигателей
- •9.4. Пуск и самозапуск синхронных электродвигателей
- •10.1. Показатели качества электроэнергии и их нормирование
- •10.2. Измерение и расчет параметров качества электроэнергии
- •10.3. Регулирование напряжения
- •10.4. Симметрирование нагрузок
- •11.1. Реактивная мощность в системах электроснабжения
- •11.2. Технические характеристики источников реактивной мощности
- •11.3. Экономические характеристики источников и затраты на передачу реактивной мощности
- •11.4. Оптимизация компенсации реактивной мощности
- •11.5. Выбор компенсирующих устройств на основе нормативных документов
- •12.1. Классификация электротехнических установок относительно мер электробезопасности
- •12.2. Заземляющие устройства
- •12.3. Расчет заземляющих устройств
- •12.4. Расчет молниезащитных устройств зданий и сооружений
- •13.1. Виды учета электроэнергии
- •13.2. Технические средства учета и контроля расхода электроэнергии
- •13.3. Регулирование электропотребления предприятий
- •13.4. Электробалансы на промышленных предприятиях
- •13.5. Экономия электроэнергии в промышленности
- •14.1. Проектирование как форма инженерной деятельности
- •14.2. Стадии проектирования и состав документации электрической части
- •14.3. Принципы создания системы автоматизированного проектирования электрической части сапр-электро
- •14.4. Задачи и структура сапр-Электро различных стадий проектирования
- •1. Электроснабжение
- •2. Силовое электрооборудование и освещение
- •15.1. Методика определения технико-экономической эффективности капитальных вложений
- •15.2. Стоимость элементов систем электроснабжения
- •15.3. Технико-экономические расчеты при реконструкции
- •15.4. Учет фактора времени в технико-экономических расчетах
- •15.5. Определение экономической эффективности использования систем автоматизированного проектирования
- •16.1. Принципы организации управления системами электрики
- •16.2. Организация эксплуатации и ремонта системы электроснабжения
- •16.3. Организация электроремонта силового электрооборудования
- •16.4. Определение численности электротехнического персонала
- •16.5. Оптимизация структуры оборудования, образующего электрическое хозяйство
8.6. Выбор трансформаторов тока и трансформаторов напряжения
Для контроля за режимом работы электроприемников, а также для производства денежного расчета с энергоснабжающей организацией применяются контрольно-измерительные приборы на подстанциях, присоединяемые к цепям высокого напряжения через измерительные трансформаторы тока и напряжения.
Трансформаторы тока выбираются по номинальному напряжению, номинальному первичному току и проверяются по электродинамической и термической стойкости к токам короткого замыкания. Особенностью выбора трансформаторов тока является выбор по классу точности и проверка на допустимую нагрузку вторичной цепи. Трансформаторы тока для присоединения счетчиков, по которым ведутся денежные расчеты, должны иметь класс точности 0,5. Для технического учета допускается применение трансформаторов тока класса точности 1, для включения указывающих электроизмерительных приборов — не ниже 3, для релейной защиты — класса 10(Р). Чтобы погрешность трансформатора тока не превысила допустимую для данного класса точности, вторичная нагрузка Z2р не должна превышать номинальную Z2ном задаваемую в каталогах.
Индуктивное сопротивление токовых цепей невелико, поэтому принимают Z2р = r2p. Вторичная нагрузка состоит из сопротивления приборов, соединительных проводов и переходного сопротивления контактов:
Для определения сопротивления приборов, питающихся от трансформаторов тока, необходимо составить таблицу — перечень электроизмерительных приборов, устанавливаемых в данном присоединении. Суммарное сопротивление приборов рассчитывается по суммарной мощности, Ом:
где S2 — суммарная мощность, потребляемая приборами, В • А; I2ном - номинальный ток вторичной обмотки трансформатора, А. В распредели тельных устройствах 6-10 кВ применяются трансформаторы с I2ном = = 5 А, вРУ 110-220кВ-1 А или 5 А.
Сопротивление контактов rк принимают 0,05 Ом при двух-трех и 0,1 — при большем количестве приборов.
Сопротивление проводов рассчитывается по их сечению и длине [см, (7.13)]. Для алюминиевых проводов минимальное сечение 4 мм2, для медных — 2,5 мм2.
Расчетная длина
провода lp,
м, зависящая от схемы соединения
трансформатора
тока и расстояния / от трансформатора
до приборов:
— при включении
трансформаторов тока в неполную звезду;
2l
— при включении всех приборов в одну
фазу; l
- при включении трансформаторов
тока в полную звезду.
При этом длина l может быть принята ориентировочно для РУ 6-10 кВ: при установке приборов в шкафах КРУ / = 4 -г 6 м; на щите управления / = 30 40 м; для РУ 35 кВ / = 45 60 м; для РУ 110-220 кВ / = 65 80 м.
Если при принятом сечении провода вторичное сопротивление цепи трансформаторов тока окажется больше Z2ном для заданного класса точности, то необходимо определить требуемое сечение проводов с учетом допустимого сопротивления вторичной цепи:
Требуемое сечение провода, мм2
Полученное сечение округляется до большего стандартного сечения контрольных кабелей: 2,5; 4; 6; 10мм2.
Условия выбора
трансформатора тока сведены в табл.
8.5. Дополнительно
могут быть заданы: kдин
= IT.дин
/
I1ном
- кратность тока динамической
стойкости трансформатора тока; кт
= IT
/I1ном
— кратность
тока термической стойкости; I1ном
— номинальный ток первичной
обмотки трансформатора тока.
Трансформаторы напряжения, предназначенные для питания катушек напряжения измерительных приборов и реле, устанавливают на каждой секции сборных шин. Их выбирают по форме исполнения, конструкции и схеме соединения обмоток, номинальному напряжению, классу точности и вторичной нагрузке.
Условия выбора трансформаторов напряжения: конструкция, схема соединения; Uс.ном = U1ном, где Uс.ном - номинальное напряжение сети, к которой присоединяется трансформатор напряжения, кВ; U1ном — номинальное напряжение первичной обмотки трансформатора, кВ; класс точности; S2расч S2ном, где S2pасч - расчетная мощность, потребляемая вторичной цепью, В • А; S2ном — номинальная мощность вторичной цепи трансформатора напряжения, обеспечивающая его работу в заданном классе точности, В . А.
Для однофазных трансформаторов, соединенных в звезду, в качестве S2ном необходимо взять суммарную мощность всех трех фаз, а для соединенных по схеме неполного открытого треугольника — удвоенную мощность одного трансформатора. В выбранном классе точности, если нагрузка (вторичная) превышает номинальную мощность, часть приборов подключают к дополнительно установленному трансформатору напряжения. Вторичная нагрузка ТН - это мощность приборов и реле, подключенных к ТН. Для упрощения расче-
тов расчетную нагрузку можно не разделять по фазам, тогда
При определении вторичной нагрузки сопротивление соединительных проводов не учитывается, так как оно мало. Однако ПУЭ требует оценить потерю напряжения, которая в проводах от трансформаторов к счетчикам не должна превышать 0,5%, а в проводах к щитовым измерительным приборам - 3%. Сечение провода, выбранное по механической прочности, отвечает, как правило, требованиям потерь напряжения.
Выбор типа трансформатора напряжения определяется его назначением. Если от ТН получают питание расчетные счетчики, то целесообразно использовать на напряжениях 6, 10, 35 кВ два однофазных трансформатора типа НОМ или НОЛ, соединенных по схеме открытого неполного треугольника. Два однофазных ТН обладают большей мощностью, чем один трехфазный, а по стоимости на напряжения 6 и 10 кВ они примерно равноценны. Если одновременно с измерением необходимо производить контроль изоляции в сетях 6-10 кВ, то устанавливают трехфазные трехобмоточные пятистержневые трансформаторы напряжения серии НТМИ или группу из трех однофазных трансформаторов серии ЗНОМ или ЗНОУТ, если мощность НТМИ недостаточна. При использовании трех однофазных трансформаторов, соединенных в звезду, нейтральная точка обмотки высокого напряжения ТН должна быть заземлена для правильной работы приборов контроля состояния изоляции.
Для напряжения 110 кВ и выше применяют каскадные трансформаторы НКФ.