
- •1.1. Термины и определения электрики
- •1.2. Потребители электрической энергии
- •1.3. Уровни (ступени) системы электроснабжения
- •1.4. Основные требования к системам электроснабжения
- •1.5. Системное описание электрического хозяйства
- •2.1. Характерные электроприемники
- •2.2. Параметры электропотребления и расчетные коэффициенты
- •2.3. Формализуемые методы расчета электрических нагрузок
- •2.4. Определение электрических нагрузок комплексным методом
- •2.5. Пользование электрической энергией
- •3.1. Схемы присоединения и выбор питающих напряжений
- •3.2. Определение заводских источников питания и построение схемы электроснабжения
- •3.3. Надежность электроснабжения потребителей
- •3.4. Выбор места расположения источников питания
- •4.1. Исходные данные и выбор схемы гпп
- •4.2. Выбор и использование силовых трансформаторов
- •4.3. Схемы блочных подстанций пятого уровня
- •4.4. Схемы печных и нетиповых подстанций
- •4.5. Компоновки открытых и закрытых распределительных устройств (подстанций)
- •5.1. Цеховые подстанции третьего уровня системы электроснабжения
- •5.2. Выбор трансформаторов для цеховых подстанций
- •5.3. Размещение подстанций зур и распределительных устройств 2ур
- •5.4. Преобразовательные установки и подстанции
- •6.1. Общие сведения о способах канализации
- •6.2. Воздушные линии
- •6.3. Кабельные линии
- •6.4. Кабельная канализация
- •6.5. Токопроводы
- •7.1. Короткое замыкание в симметричной трехфазной цепи промышленного предприятия
- •7.2. Вычисление значений токов короткого замыкания в электроустановках свыше 1 кВ
- •7.3. Короткое замыкание в сетях напряжением до 1 кВ
- •8.1. Выбор аппаратов по номинальным параметрам
- •8.2. Выбор высоковольтных выключателей (ячеек)
- •8.3. Выбор разъединителей, отделителей, короткозамыкателей
- •8.4. Выбор выключателей нагрузки и предохранителей
- •8.5. Выбор реакторов
- •8.6. Выбор трансформаторов тока и трансформаторов напряжения
- •8.7. Проверка токоведущих устройств на термическую и динамическую стойкость
- •9.1. Общая характеристика асинхронных электродвигателей с короткозамкнутым ротором
- •9.2. Пуск и самозапуск асинхронных электродвигателей
- •9.3. Общая характеристика синхронных электродвигателей
- •9.4. Пуск и самозапуск синхронных электродвигателей
- •10.1. Показатели качества электроэнергии и их нормирование
- •10.2. Измерение и расчет параметров качества электроэнергии
- •10.3. Регулирование напряжения
- •10.4. Симметрирование нагрузок
- •11.1. Реактивная мощность в системах электроснабжения
- •11.2. Технические характеристики источников реактивной мощности
- •11.3. Экономические характеристики источников и затраты на передачу реактивной мощности
- •11.4. Оптимизация компенсации реактивной мощности
- •11.5. Выбор компенсирующих устройств на основе нормативных документов
- •12.1. Классификация электротехнических установок относительно мер электробезопасности
- •12.2. Заземляющие устройства
- •12.3. Расчет заземляющих устройств
- •12.4. Расчет молниезащитных устройств зданий и сооружений
- •13.1. Виды учета электроэнергии
- •13.2. Технические средства учета и контроля расхода электроэнергии
- •13.3. Регулирование электропотребления предприятий
- •13.4. Электробалансы на промышленных предприятиях
- •13.5. Экономия электроэнергии в промышленности
- •14.1. Проектирование как форма инженерной деятельности
- •14.2. Стадии проектирования и состав документации электрической части
- •14.3. Принципы создания системы автоматизированного проектирования электрической части сапр-электро
- •14.4. Задачи и структура сапр-Электро различных стадий проектирования
- •1. Электроснабжение
- •2. Силовое электрооборудование и освещение
- •15.1. Методика определения технико-экономической эффективности капитальных вложений
- •15.2. Стоимость элементов систем электроснабжения
- •15.3. Технико-экономические расчеты при реконструкции
- •15.4. Учет фактора времени в технико-экономических расчетах
- •15.5. Определение экономической эффективности использования систем автоматизированного проектирования
- •16.1. Принципы организации управления системами электрики
- •16.2. Организация эксплуатации и ремонта системы электроснабжения
- •16.3. Организация электроремонта силового электрооборудования
- •16.4. Определение численности электротехнического персонала
- •16.5. Оптимизация структуры оборудования, образующего электрическое хозяйство
8.1. Выбор аппаратов по номинальным параметрам
Аппараты должны удовлетворять условиям длительной номинальной работы, режиму перегрузки (форсированный режим) и режиму возможных коротких замыканий. Аппараты должны соответствовать условиям окружающей среды (открытая или закрытая установка, температура, запыленность, влажность и другие показатели окружающей среды). Как правило, все элементы системы электроснабжения выбираются по номинальным параметрам и проверяются по устойчивости при сквозных токах короткого замыкания и перенапряжениях.
Номинальное напряжение аппарата соответствует классу его изоляции. Всегда имеется определенный запас электрической прочности, оговариваемый техническими условиями на изготовление и позволяющий аппарату работать длительное время при напряжении 10—15% выше номинального (максимальное рабочее напряжение аппарата). Отклонения напряжения на практике обычно не превышают этих величин. Поэтому при выборе аппарата достаточно соблюсти условие
где uhоm.a - номинальное напряжение аппарата; Uном - номинальное напряжение электроустановки, в которой используется аппарат.
Повышению высоты установки аппарата над уровнем моря соответствует снижение применяемого напряжения. При высоте установки аппарата до 1000 м допускаются максимальные рабочие напряжения на аппарате. При больших высотах над уровнем моря напряжение не должно превышать номинального значения.
При протекании номинального тока при номинальной температуре окружающей среды аппарат может работать неопределенно долго без недопустимого перегрева. Поэтому аппарат надлежит выбирать так, чтобы максимальный действующий рабочий ток цепи не превышал номинального тока, указанного в паспорте аппарата. Так как расчетная температура окружающей среды принята +35 °С, то при другой физической температуре окружающей среды оc следует вычислить длительно допустимый ток аппарата
где доп - наименьшая из допустимых для отдельных частей аппарата температура.
При о.с < 35 °С ток Iо можно повысить относительно Iном.а на 0,5% на каждый градус понижения температуры против +35 °С, но всего не более чем на 20%.
Аппараты, выбранные по номинальному напряжению и номинальному току, подлежат проверке на термическую и динамическую стойкость при токах короткого замыкания, на отключающую способность. Измерительные трансформаторы, кроме того, проверяются на соответствие их работы требуемому классу точности.
Индуктивное сопротивление токоограничивающих реакторов в зависимости от их назначения выбирается по требуемому снижению тока короткого замыкания за реактором (для снижения необходимой отключающей способности выключателей или для использования кабелей меньшего сечения), по минимальному допустимому напряжению на шинах (для обеспечения самозапуска асинхронных двигателей).
8.2. Выбор высоковольтных выключателей (ячеек)
Все высоковольтные потребители подстанций, питающиеся от 5УР и 4УР (цеховые трансформаторы, высоковольтные двигатели, батареи конденсаторов), подсоединяют посредством высоковольтных ячеек. Рекомендуется использовать комплектные ячейки КРУ и КСО. Такое решение позволяет существенно повысить производительность монтажных работ, сократить стоимость подстанций, повысить надежность электроснабжения и безопасность обслуживания. Выбор конкретной ячейки комплектного распределительного устройства зависит от токов рабочего режима и короткого замыкания в соответствующем присоедине-
нии, предопределяющих выбор выключателя или другого коммутационного аппарата.
В распределительных устройствах 10(6) кВ применяют мало масляные подвесные выключатели со встроенными пружинными и электромагнитными приводами, а также элегазовые, бесконтактные, вакуумные и другие выключатели. Маломасляные выключатели встраиваются в стационарные камеры одностороннего обслуживания, применяющиеся преимущественно в электроустановках средней мощности. Распространены шкафы серий КРУ и КР, комплектуемые выключателями ВМПЭ на номинальные токи до 3200 А и токи КЗ до 31,5 кА. Большой диапазон исполнений дает возможность применять выключатели ВМПЭ как для присоединения электроустановок средней мощности, так и на стороне вторичного напряжения крупных трансформаторов.
При больших мощностях короткого замыкания и больших рабочих токах рекомендуется использовать шестибаковые (по два на фазу) горшковые выключатели типа МГГ-10 с номинальным током 3200, 4000 и 5000 А и отключаемым током 30,45 и 60 кА. Для присоединения потребителей с частыми коммутационными операциями рекомендуется использовать шкафы КЭ с электромагнитными выключателями типа ВЭМ-6, ВЭМ-10 на токи 1000-3200 А.
Количество ячеек, присоединенных к секции шин, должно быть выбрано исходя из следующих потребностей: по одной ячейке на каждое проектируемое присоединение 10(6) кВ; по одной резервной ячейке на каждой секции шин; ячейка с межсекционным выключателем; ячейка с измерительным трансформатором напряжения на каждой секции шин; ячейка с вводным выключателем. Наиболее типичной схемой РУ 10 кВ промышленного предприятия является схема с одиночными секционированными шинами.
Выбор высоковольтных выключателей производят:
по напряжению электроустановки (8.1) и длительному току
где Iном - номинальный ток выключателя, кА; Iраб max - наибольший ток утяжеленного режима, кА, Iраб mах = Iр по (2.5);
по электродинамической стойкости при токах короткого замыкания
где Iп0 - действующее значение периодической составляющей начального тока короткого замыкания, кА; Iдин, Im дин — действующее значение периодической составляющей и амплитудное значение полного тока электродинамической стойкости выключателя, кА; iy — ударный ток короткого замыкания, кА.
Выключатель, выбранный по номинальному напряжению, номиналь-
ному продолжительному току и электродинамической стойкости, должен быть проверен по отключающей способности на возможность отключения симметричного тока
где Iп - периодическая составляющая тока короткого замыкания в момент расхождения контактов выключателя, кА; Iоткл.ном номинальный ток отключения выключателя, кА.
Расчетное время отключения выключателя определяется в соответствии с выражением
где tр.э.min — минимальное время срабатывания релейной защиты, принимаемое равным 0,01 с для первой ступени защиты и 0,01 tc для последующих ступеней, где tc - ступень селективности. Значение tc может быть принято равным 0,3—0,5 с для быстродействующих защит; tc.в.откл - собственное время отключения выключателя, с. Значение tc.в.откл для мало масляных выключателей на 10 кВ ВМП составляет 0,12 с, МГГ - 0,15 с, для электромагнитных ВЭМ - 0,07 с.
На отключение полного тока короткого замыкания с учетом апериодической составляющей выключатель проверяется по выражению
где iа - апериодическая составляющая тока в момент расхождение контактов выключателя, кА; Н - нормированное процентное содержание апериодической составляющей тока короткого замыкания, значение определяется по кривой на рис. 8.1. Закон изменения апериодической составляющей описывается уравнением затухающей экспоненты
где Ta - постоянная времени затухания, определяемая по табл. 8.1. По термической стойкости проверка осуществляется по расчетному импульсу квадратичного тока короткого замыкания и найденным в каталоге значениям IT и tT :
где Вк - расчетный импульс квадратичного тока короткого замыкания, кА • с; Iт - ток термической стойкости выключателя, кА; tT - длительность протекания тока термической стойкости, с.
При удаленном коротком замыкании значение теплового импульса тока короткого замыкания Вk может определяться по формуле
Значение собственного времени отключения выключателя принимается для выбранного типа выключателя на основе вышеуказанных рекомендаций. Время действия релейной защиты может быть принято: при расчете кабелей и выключателей тупиковых присоединений ЗУР (высоковольтные двигатели, цеховые трансформаторы) tр.з = 0,01 с; для вводных выключателей РУ 6—10 кВ 4УР tр.з = 0,5 0,6 с; для коммутационных аппаратов 5УР tр.з =1,2 2 с.
При коротком замыкании вблизи группы двигателей тепловой импульс определяется как суммарный от периодической bk.п и апериодической Вк.а составляющих:
где IПОД — ток короткого замыкания от синхронных и асинхронных двигателей; Iп0с — ток короткого замыкания от системы; ТД — постоянная времени эквивалентного двигателя. При отсутствии данных о типах двигателей можно принять значение ТД равным 0,07 с.
Апериодические составляющие токов двигателей от системы затухают по экспонентам с близкими постоянными времени. Поэтому апериодическую составляющую тока в месте короткого замыкания можно представить в виде одной экспоненты с эквивалентной постоянной времени
Тепловой импульс от апериодической составляющей тока короткого замыкания
При наличии синхронных двигателей на соседней секции шин максимальное результирующее значение тока внешнего короткого замыкания определяется с учетом суммарной подпитки от обеих секций, так как секционный выключатель может быть включен. При проектировании подстанции промышленного предприятия возникает необходимость повторения процедур выбора аппаратов и токоведущих устройств столько раз, сколько отходящих линий имеется на предприятии.