
- •Ферменты
- •Строение коферментов
- •Изоферменты
- •Свойства ферментов
- •Классификация и номенклатура ферментов
- •Номенклатура ферментов
- •Современные представления о ферментативном катализе
- •Молекулярные эффекты действия ферментов
- •Теория кислотно-основного катализа
- •Регуляция активности ферментов
- •Обмен веществ
- •I. Превращение пвк
- •II. Цикл Кребса:
- •Функции цтк:
- •III. Биологическое окисление.
- •Дыхательная цепь (дц) (или Цепь Переноса Электронов – цпэ, или Электрон-Транспортная Цепь – этц)
- •Функционирование дц
- •Окислительное фосфорилирование
- •Альтернативные варианты биологического окисления
Биохимия и ее задачи
Биохимия – это наука о структуре веществ, входящих в состав живого организма, их превращениях и физико-химических процессах, лежащих в основе жизнедеятельности.
Биохимия является одной из фундаментальных дисциплин медицины и биологии. Она занимается познанием живого на уровне макромолекул. Биохимия – это результат интеграции биологии и химии.
Разделы биохимии:
1. статическая (биоорганическая химия);
2. динамическая (изучает превращение веществ);
3. функциональная (изучает физико-химические процессы).
Выделяют разделы биохимии в зависимости от объекта изучения: биохимия животных, микроорганизмов, растений, человека, клиническая биохимия и т.д.
Основные задачи биохимии:
1. изучение процессов биокатализа;
2. изучение строения и функций нуклеиновых кислот;
3. изучение молекулярных механизмов наследственности;
4. изучение строения, обмена белков;
5. изучение превращения углеводов;
6. изучение процессов обмена липидов;
7. изучение роли биорегуляторов (гормоны, нейромедиаторы);
8. изучение роли витаминов и минеральных веществ.
Значение БХ для медицины:
1. необходима для понимания сущности заболевания (патогенеза), его механизма. Пр.: сахарный диабет в результате недостатка инсулина, атеросклероз – нарушение обмена липопротеинов, опухолевый рост – функционирование онкогенов;
2. необходима для диагностики заболеваний. Пр.: биохимический анализ крови, мочи. Определяется:
а) количество субстрата (уровень метаболита);
б) активность фермента;
в) количество биорегуляторов (гормонов и нейропептидов);
В диагностике заболеваний используются различные методы: радио-иммуный анализ, иммуно-ферментный анализ, введение ДНК-зондов для выявления чужеродной ДНК, дефектов ДНК, онкогенов. Также позволяет выявить предрасположенность к заболеваниям;
3. разработка новых лекарственных препаратов;
4. необходима для профилактики заболеваний. Пр.: рахит – в результате недостатка витамина D, цинга – витамина С.
Ферменты
Ферменты – это биологические катализаторы белковой природы. В одной клетке до 10 тыс. молекул фермента, которые катализируют 2000 ферментативных реакций. 1800 тыс. ферментов выделены, но их строение не расшифровано. Старое название ферментов – энзимы, а наука, их изучающая – энзимология.
По своей химической природе ферменты – это белки, они имеют несколько уровней структурной организации и обладают всеми другими свойствами белков. Очень большое количество ферментов не имеют 4-ую структуру, т.е. являются олигомерами.
Ферменты могут быть простыми и сложными. Простые состоят только из полипептидной цепи, а сложные имеют пептидную (апофермент) и небелковую части (кофермент). Далее идёт рис. [апофермент+кофермент=холофермент – обладает полноценной функциональной активностью]. По отдельности ни апофермент, ни кофермент, не выполняют функции так, как холофермент.
Строение ферментов. В пространственной структуре фермента условно выделяют ряд участков, которые выполняют соответствующие им функции. Активный центр (АЦ) – участок в молекуле фермента, где происходит связывание и химическое превращение субстрата (S). Субстрат – вещество, подвергающееся химическому превращению (например, для фермента лактатдегидрогеназы (ЛДГ) субстратом будет молочная кислота). В активном центре выделяется контактный участок и каталитический участок. Контактный участок – это место активного центра, в котором происходит связывание фермента с субстратом по принципу комплементарности, т.е. именно контактный участок обеспечивает специфическое сродство субстрата ферменту. Образовавшийся комплекс носит название фермент-субстратный комплекс. Каталитический участок (центр) – это место в активном центре фермента, где происходит химическое превращение субстрата [рис. изображён фермент-субстратный комплекс, а именно контактный участок, каталитический участок, активный центр и субстрат].
Если фермент – сложный белок, то обычно простетическая часть находится тоже в активном центре и участвует в формировании активного центра. Активный центр занимает небольшую часть молекулы фермента, обычно располагается в углублении, и в его образовании участвует небольшое число аминокислотных остатков (до 20). Аминокислотные остатки могут быть удалены друг от друга, но при формировании пространственной структуры фермента они располагаются в области активного центра.
В формировании активного центра могут участвовать остатки, несущие следующие функциональные группы: NH2 (ЛИЗ, АРГ), COOH (ГЛУ, АСП), OH (СЕР, ТРЕ), SH (ЦИС), имидазольное кольцо (ГИС). В качестве единиц, участвующих в формировании активного центра, могут выступать кофакторы - ионы металлов (Cu2+, Fe2+ и т.д.), а также коферменты. В сложном ферменте АК-остатки активного центра создают условия для правильной его конформации и помогают кофакторам в связывании, ориентации, а, следовательно, и в превращении субстрата.
Боковые группы остальных аминокислот не участвуют в образовании активного центра, но обеспечивают правильную пространственную конформацию активного центра и влияют на его реакционную способность.
Ряд ферментов могут содержать аллостерический центр. [рис. фермента с аллостерическим и активным центрами] Эти ферменты относят к аллостерическим ферментам. К аллостерическому центру присоединяются различные вещества, отличные по строению от субстрата. Эти вещества могут изменять конформацию активного центра, т.е. влиять на связывание и превращение субстрата, они называются аллостерическими эффекторами. Все аллостерические эффекторы делятся на положительные – активаторы, и отрицательные – ингибиторы.