- •Сущность жизни
- •Единство химического состава :
- •Обмен веществ и энергии ( энергозависимость )
- •Эволюционное развитие ( филогенез )
- •Уровни организации живой материи
- •Иерархические уровни организации живой материи
- •Органный уровень
- •Уровни организации органического мира
- •Химическая организация клетки
- •Химические соединения ( вещества ) клетки
- •II . Органические вещества :
- •Минеральные соли ( клеточные электролиты )
- •Общие биологические функции солей
- •Биологические функции отдельных химических элементов
- •Органические вещества клетки
- •Опорно - строительная ( структурная )
- •Аминокислоты . Белки
- •Образование пептидной связи
- •I . Аммонотелические организмы :
- •II . Уреотелические животные :
- •III . Урикотелические животные :
- •Структура белка
- •Биологические функции нативных белков
- •Ферменты
- •Механизм действия фермента
- •Этапы ферментативной реакции
- •Современная классификация ферментов
- •Другие биологические функции белка
- •2 . Структурная
- •Сложные липиды (фосфолипиды , гликолипиды , липопротеины , ганглиозиды)
- •Функции липидов (жиров)
- •Регуляторная
- •Нуклеиновые кислоты
- •Строение нуклеотида
- •Днк ( дезоксирибонуклеиновая кислота )
- •Строение днк
- •Рнк ( рибонуклеиновая кислота )
- •Особенности полинуклеотидов
- •Мононуклеотиды : атф , адф , амф
- •Атф ( аденозинтрифосфорная кислота )
- •Функции мононуклеотидов
- •Динуклеотиды : над и надф
- •Структурная организация клетки Методы исследования строения и функций клетки
- •I . Микроскопические методы
- •1 . Световая микроскопия
- •2 . Электронная микроскопия
- •Клеточные структуры и их функции Общий план строения эукариотической клетки
- •2 . Интегральные ( погружённые )
- •3 . Сквозные интегральные
- •Функции мембран
- •Транспорт веществ через мембрану
- •Цитоплазма
- •Цитозоль ( гиалоплазма , цитоплазматический матрикс , основное вещество )
- •Мембранные органеллы клетки
- •Одномембранные органоиды ( вакуолярная система клетки )
- •Структуры , свойственные только растительным клеткам
- •Сравнение растительной и животной клетки
- •Общие признаки
- •Единство химического состава
- •Основные положения современной клеточной теории
- •Клеточная теория
- •Основные положения современной клеточной теории
- •Обмен веществ и превращение энергии в клетке
- •Типы гетеротрофного питания
- •Общая характеристика метаболизма ( обмена веществ )
- •Значение атф в обмене веществ и энергии
- •Энергетический обмен в клетке . Синтез атф
- •Механизм аэробного дыхания
- •Этапы аэробного окисления пвк
- •Синтез атф в митохондрии клетки. Фотосинтез
- •Значение фотосинтеза ( космическая роль зелёных растений )
- •Теория фотосистем
- •Сопоставление фотосинтеза и дыхания эукариот
- •Хемосинтиез
- •Сходства процессов дыхания и фотосинтеза
- •Связь фотосинтеза и дыхания
- •Отличия фотосинтеза от хемосинтеза
- •Биосинтез белка
- •Генетический код
- •Транскрипция
- •Трансляция
- •Инициация
- •Регуляция генной активности
- •Концепция оперона
- •Реакции маиричного синтеза
- •Воспроизведение ( деление ) клеток Жизненный цикл клетки
- •Период выполнения клеткой многоклеточного организма специфических функций
- •Подготовка к предстоящему делению ( митозу )
- •Деление клетки - митоз
- •Процессы интерфазы
- •Синтетический - s
- •Постсинтетический – g2
- •Митоз ( непрямое деление , кариокинез )
- •Амитоз ( прямое деления ядра клетки , простое деление )
- •Мейоз ( редукционное деление )
- •Отличия ( особенности ) митоза от мейоза
- •Сходства митоза и мейоза
- •Общая характеристика бесполого и полового размножения
- •Чередование форм размножения ( гаплоидной и диплоидной фазы жизненного цикла )
- •Бесполое размножение
- •Половое размножение
- •Половые клетки ( гаметы )
- •Гаметогенез у животных
- •Сперматогенез
- •Овогенез
- •Отличия ( особенности ) митоза от мейоза
- •Сходства митоза и мейоза
- •Оплодотворение у животных
- •Значение оплодотворения
- •Нерегулярные типы полового размножения
- •Онтогнез , его типы и периодизация
- •Процессы онтогенеза :
- •Типы онтогенеза
- •Периодизация онтогенеза
- •I . Предэмбриональный ( предзиготный ) период
- •Дробление
- •Дробление оплодотворённого яйца
- •Гаструляция
- •Гистогенез и органогенез
- •Эмбриональная индукция
- •Критические периоды развития
- •Целостность онтогенеза
- •Постэмбриональное ( постнатальное ) развитие
- •Старость как этап онтогенеза
- •Основные гипотезы старения
- •Царство бактерии
- •Внешние структуры бактериальной клетки
- •Клеточная стенка
- •Плазматическая мембрана
- •Жгутики
- •Пили , или фимбрии
- •Внутренние структуры бактериальной клетки
- •Цитоплазма
- •Ядерный аппарат бактерий ( генетический материал )
- •Другие внутренние структуры прокариотической клетки
- •Рибосомы
- •2. Мезосомы
- •Жизнедеятельность бактерий
- •Рост и размножение бактерий
- •Бесполое размножение бактерий
- •Половое размножение , или генетическая рекомбинация у бактерий
- •1. Трансформация
- •3. Трансдукция
- •Приспособления бактерий к неблагоприятным условиям внешней среды
- •1. Спорообразование
- •2. Инцистирование
- •Значение бактерий в природе и жизни человека
- •Меры борьбы с бактериями
- •Сине-зелёные « водоросли » ( цианобактерии , цианеи )
- •Архебактерии
- •Структурные, метаболические и генетические отличия прокариот и эукариот
- •Общие признаки прокариот и эукариот
- •Единство химического состава
- •Признаки неживой материи :
- •Признаки живой материи :
- •Строение вирусов
- •Нуклеиновые кислоты вирусов ( нк )
- •Белковая оболочка вируса ( капсид )
- •Внешнее строение вирусов
- •Бактериофаги ( фаги )
- •Действие вируса на клетку
- •Репродукция ( размножение ) вируса внутри клетки-хозяина
- •Происхождение вирусов
- •Значение вирусов
- •Мировая эпидемия спиДа
- •Способы предохранения от заражения вич
- •Основные закономерности наследственности и изменчивости
- •Материальные основы наследственности
- •Современное состояние теори гена ( свойства гена )
- •Строение гена
- •Классификация генов
- •Понятие аллели
- •Неполное доминирование
- •Дигибридное и полигибридное скрещиние . Третий закон Менделя
- •Генетика пола
- •Наследование
- •Н аследование
- •С цепленное наследование
- •Генетика и эволюция. Эволюционно-генетическая характеристика популяции . Популяционная генетика
- •Генетическая характеристика популяции .
- •III. Мутационный процесс и резерв наследственной изменчивости
- •Частота аллелей и генотипов ( генетическая структура популяции )
- •Цитоплазматическая наследственность
- •Изменчивость
- •Генотипическая изменчивость
- •Генные мутации ( точковые , истинные )
- •Хромосомные мутации ( хромосомные перестройки , аберрации )
- •Геномные мутации
- •Полиплоидия
- •Аллополиплоидия ( амфиполиплоидия )
- •Анеуплоидия ( гетероплоидия )
- •Гаплоидия
- •Соматические мутации
- •Закон гомологических рядов в наследственной изменчивости
- •Комбинативная изменчивость
- •Фенотипическая изменчивость ( модификационная или ненаследственная )
- •Статистические закономерности модификационной изменчивости
- •Вариационнвя кривая распределения модификаций в вариционном ряд
- •Различия в проявлении мутаций и модификаций
- •Генетика человека
- •Особенности человека как объекта генетических исследований
- •Методы изучения генетики человека
- •Генетика и медицина ( медицинская генетика )
- •Наследственные аномалии плоидности хромосом
- •Анеуплоидные ( гетероплоидные ) аномалии человека
- •Полисомии по половым хромосомам
- •Наследственные болезни генных мутаций
- •Болезни с наследственным предрасположением
- •Лечение наследственных болезней
- •Взаимодействие генов
- •Взаимодействие аллельных генов ( одной аллельной пары )
- •Взаимодействие неаллельных генов
- •Эпистаз
- •Комплементарность
- •Полимерия
- •Плейотропия ( множественное действие гена )
- •Основы селекции
- •Одомашнивание как первый этап селекции
- •Учение об исходном материале . Центры происхождения и многообразия культурных растений
- •Методы селекции
- •Гибридизация ( скрещивание )
- •Родственное скрещивание ( инбридинг )
- •Неродственное скрещивание ( аутбридинг )
- •Отдалённая гибридизация
- •Гетерозис
- •Использование спонтаннвых мутаций
- •Индуцированный ( искусственный ) мутагенез
- •Отдалённая гибридизация у растений
- •Межлинейная гибридизация у растений
- •Вегетативное размножение соматических мутаций у растений
- •Методы селекционно-генетической работы и. В. Мичурина
- •Полиплоидия
- •Новейшие методы селекции растений ( клеточная инженерия , хромосомная инженерия , генная инженерия )
- •Селекция животных
- •Методы селекции животных Одомашнивание
- •Отдалённая гибридизация у животных
- •Отбор спонтанных мутаций и индуцированный мутагенез
- •Метод регулирования пола организма
- •Селекция микроорганизмов
- •Биотехнология
- •Микробиологический синтез
- •Генная ( генетическая ) инженерия
- •Технология гено-инженерного процесса
- •Хромосомная инженерия у растений
- •Клеточная инженерия
- •Использование культуы клеток и тканей растений в практике
- •Экологическая биотехнология
- •Биоэнергетика
- •Биоконверсия
- •Инженерная энзимология
- •Биогеотехнология
- •Биосфера и человек
- •Живое вещество
- •Биомасса
- •Общая схема биотического круговорота веществ ( биогенной миграции атомов )
- •Биогеохимические циклы отдельных химических элементов
- •Поток энергии в биосфере
- •Возникновение и эволюция биосферы
- •Ноосфера
- •Основные экологические проблемы современности . Влияние человека на биосферу
- •Истончение и локальное разрушение озонового экрана в стратосфере
- •Изменение климата Земли
- •Изменение состава и загрязнение атмосферы
- •4. Сокращение количества пригодной пресной воды
- •Рост народонаселения ( демографический взрыв )
- •Загрязнение подземных вод
- •Производство энергии
- •Производство пищи . Истощение и загрязнение почвы , сокращение площади плодородных почв
- •Сведение лесов , распахивание новых земель
- •Сокращение природного биологического разнообразия
- •Кислотные осадки
- •12. Экологический кризис Мирового океана и загрязнение природных вод
- •13. Рост объёмов промышленных и бытовых отходов
- •Производство промышленных материалов
- •Пути решения экологических проблем
- •Сдерживание роста населения Земли
- •Генетический мониторинг популяций человека
- •Рациональное потребление и управление природными ресурсами
- •4. Экологическая стратегия развития сельского хозяйства
- •5. Сохранение природных сообществ , экосистем , биогеоценозов ( природного биоразнообразия )
- •Происхождение жизни
- •Звездная стадия истории Земли
- •II. Концентрация органических веществ с образованием открытых пробиологических систем – коацерватов
- •III. Возникновение процесса самовоспроизведения молекул (биогенного матричного синтеза биополимеров )
- •Предпосылки возникновения эволюционной теории ч. Дарвина Социально-экономические предпосылки
- •Естественнонаучные предпосылки
- •Основные положения эволюционного учения ч. Дарвина
- •Проблематика дарвинизма
- •Логическая структура эволюционного учения ч. Дарвина Изменчивость Обоснование изменяемости видов
- •Формы изменчивости
- •Коррелятивная ( соотносительная ) изменчивость
- •Компенсационная изменчивость
- •Причины изменчивости
- •Значение изменчивости
- •Основные положения эволюционного учения ч. Дарвина
- •Значение эволюционного учения ч. Дарвина
- •Главнейшие работы ч. Дарвина
- •Концепция вида. Критерии вида
- •Развитие представлений о виде
- •Современная концепция вида
- •Критерии вида ( признаки идентификации видовой принадлежности )
- •Популяции
- •X. Миграция
- •Элементарные факторы эволюции
- •Мутационный процесс
- •Генетическая рекомбинация
- •Изоляция
- •Миграции
- •Популяционные волны
- •Впервые открыли н. П. Дубинин (рус.), д. Д. Ромашов (рус.) , с. Райт (амер.) , р. Фишер (англ.)
- •Результат дрейфа генов ( для малых популяций )
- •Предпосылки ( факторы ) естественного отбора :
- •Борьба за существование Формы естественного отбора Движущий отбор ( Описан ч. Дарвином , современное учение развито д. Симпсоном , англ. )
- •Результаты действия стабилизирующего отбора
- •Результаты действия дизруптивного отбора
- •Примеры действия дизруптивного отбора
- •Половой отбор
- •Другие формы естественного отбора Индивидуальный отбор - избирательное выживание и размножение отдельных особей , обладающих преимуществом в борьбе за существование и элиминация других
- •Основные особенности естественного и искусственного отбора
- •Общие признаки естественного и искусственного отбора
- •Борьба за существование - важнейший фактор эволюции
- •Интенсивность размножения
- •Виды борьбы за существование
- •Межвидовая борьба за существование
- •Борьба с неблагоприятными абиотическими факторами окружающей среды
- •Использование человеком сложных отношений между организмами
- •Синтетическая теория эволюции ( стэ ) : основные положения
- •Основные открытия в области биологии после создания стэ
- •Эндокринная система ( железы внутренней секреции )
- •Органы эндокринной системы
- •Гормоны средней ( промежуточной ) доли
- •Гормоны задней доли ( нейрогипофиза ) – окситрцин, вазопрессин
- •Вазопрессин ( антидиуретический гормон – адг)
- •Гормоны щитовидной железы ( тироксин , трийодтиронин )
- •Гипофункция щитовидной железы ( гипотериоз )
- •Гиперфункция щитовидной железы ( гипертериоз )
- •Паращитовидные железы ( околощитовидные )
- •Надпочечники
- •Гормоны коркового слоя ( минералкортикоиды, глюкокортикоиды, половые гормоны )
- •Гормоны мозгового слоя надпочечников ( адреналин, норадреналин )
- •Поджелудочная железа
- •Гормоны поджелудочной железы ( инсулин, глюкагон, соматостатин )
- •Половые железы
- •Семенники
- •Гормоны семенников ( андрогены – тестостерон, андростерон )
- •Яичники
- •Гормоны яичников( эстрогены – эстрадиол, прогестерон )
- •Нервная система
- •Общий план строения нервной системы
- •Рефлекс. Рефлекторная дуга
- •Структурно-функциональные особенности компонентов рефлекторной дуги
- •Механизм обратной связи
- •Центральная нервная система
- •Спинной мозг
- •Функции спинного мозга ( рефлекторная и двигательная )
- •Проводниковая функция
- •Головной мозг
- •Продолговатый мозг
- •Функции продолговатого мозга ( рефлекторная и проводниковая )
- •I. Рефлекторная функция
- •Средний мозг
- •Функции среднего мозга ( рефлекторная и проводниковая )
- •Промежуточный мозг
- •Мозжечёк
- •Функции мозжечка
- •Конечный мозг ( большой мозг, большие полушария переднего мозга )
- •Кора больших полушарий (плащ)
- •Базальные ядра серого вещества
- •Функции коры больших полушарий
- •I. Сенсорные зоны(области) коры больших полушарий
- •III. Ассоциативные зоны коры больших полушарий
- •Центры речи
- •Функции лобных долей больших полушарий
- •Функциональная асимметрия больших полушарий
- •Лимбическая система
- •Вегетативная (автономная) нервная система
- •Особенности вегетативной нервной системы
- •Особенности отделов вегетативной нервной системы
- •Функции вегетативной нервной системы
- •Основы учения о высшей нервной деятельности
- •Высшая нервная деятельность человека
- •Условные и безусловные рефлексы
- •Общие признаки безусловных и условных рефлексов
- •Методика выработки (образования) условных рефлексов
- •Торможение условных рефлексов
- •Адаптация поведения (нервной деятельности) к изменяющимся условиям среды обитания
- •Условное (внутреннее) торможение
- •Причины возникновения сна
- •Механизмы сна. Структура сна
- •Особенности высшей нервной деятельности человека
- •Особенности высшей нервная деятельность человека и животных
- •Память, как компонент высшей нервной деятельности
- •Анализаторы
- •Переферический отдел – рецептор ( орган чувств)
- •Проводниковый отдел
- •Зрительный анализатор
- •Строение глазного яблока
- •Общие принципы организации глазного яблока
- •Функционирование глаза
- •Аномалии и гигиена зрения
- •Слуховой анализатор
- •Проверочный тематический цифровой диктант по теме « Строение эукариотической клетки »
- •Проверочный тематический цифровой диктант по теме « Метаболизм клетки »
- •Тематический цифровой программированный диктант по теме « Энергетический обмен »
- •Тематический цифровой программированный диктант по теме « Фотосинтез »
- •Экзаменационное цифровое тестирование по теме « Метаболизм клетки :Энергетический обмен. Фотосинтез. Биосинтез белка»
- •Проверочный цифровой диктант по теме « Бактерии, растения, животные, грибы »
- •Проверочный цифровой диктант по теме « Деление клеток: митоз, мейоз »
- •Проверочный цифровой диктант по теме « Половое и бесполое размножение »
- •Основные признаки царств эукариот
- •Особенности видов искусственного отбора в селекции
- •Общие признаки массового и индивидуального отбора
- •Проверочный цифровой диктант по теме «Форменные элемнты крови. Эритроциты. Лейкоциты. Тромбоциты»
Наследование
Моногенное Полигенное
Аутосомное Сцепленное с половыми хромосомами
Рецессивное Доминантное X-сцепленное Y-сцепленное
Рецессивное Доминантное
Н аследование
Независимое Частично сцепленное Полностью сцепленное
Наследственность - совокупность генетических механизмовь , обеспечивающих структурно - функциональную преемственность в ряду поколений ( обуславливают закономерности наследования )
Наследование - процесс воспроизведения в ряду поколений структурно - функциональной организации конкретного биологического вида
С цепленное наследование
Известно много случаев отклонения от III закона Менделя , т. е. принцип независимого комбинирования признаков в потомстве распространяется не на все гены .
Менделирующие признаки - признаки , гены которых локализованы в разных парах гомологичных хромосом и поэтому наследующиеся в соответствии с законом независимого распределения и комбинирования признаков в потомстве ( III законом Менделя )
Количество признаков и генов , обуславливающих их развитие , у любого организма очень велико ( у человека , например , от 100 000 до 1000 000 структурных генов ) , а число хромосом невелико
В каждой хромосоме оказывается сотни и тысячи неаллельных генов
Закономерности наследования генов , локализованных в одной хромосоме , установлены выдающимся американским генетиком Т. Х. Морганом на классическом объекте генетических исследований - плодовой мушке дрозофиле ( кариотип дрозофилы составляет 4 пары хромосом крупного размера , она легка в содержении , быстро размножается , имеет множество ярких мутаций )
При скрещивании гомозиготных линий мух с чёрным цветом тела и укороченными крыльями (аавв) с мухами , имеющими серый цвет тела и длинные крылья (ААВВ) , все гибриды F1 имеют серое тело и длинные крылья ( следовательно , признаки - серое тело и длинные крылья - доминируют ) соблюдается закон единообразия гибридов первого поколения
Р ♀ аавв х ♂ ААВВ . чёрное тело серое тело . укороченные крылья длинные крылья . G ав АВ . F1 АаВв
серое тело, длинные крылья .
Далее сцепление изучали посредством анализирующего скрещивания , т. е. скрещивания полученных гибридов F1 с линией мух , гомозиготных по рецессивным генам ( при анализирующем скрещивании фенотип потомства прямо отражает типы гамет гетерозиготных родителей ; если гены не сцеплены , то у гетерозиготного организма образуется четыре типа гамет по 25% каждого сорта и , следовательно , четыре вида потомков в равном количестве , как это показано при независимом комбинировании признаков )
В опытах Моргана при проведении анализирующего скрещивании гибридных самцов из F1 с самками , обладающими чёрным телом и укороченными крыльями , в F2 образуется всего два фенотипических класса , т. е. расщепление по фенотипу 1 : 1 ( 50% мух с серым телом и длинными крыльями - АаВв и 50% - с чёрным телом и укороченными крыльями – аавв) вместо ожидаемого 1 : 1 : 1 : 1 по Менделю :
Р ♀ аавв х ♂ АаВв
G ав АВ , ав
F2 АаВв аавв . . 50% 50%
Такое отклонение от независимого распределения означает , что изучаемые гены локализованы в одной хромосоме , сцепляются и наследуются совместно ( сцеплённое наследование )
Сцеплённое наследование – явление совместного наследования генв , локализованных в одной хромосоме
Сцепление генов - локализация генов в одной хромосоме
Закон сцеплённого наследования Т. Моргана - гены , локализованные в одной хромосоме , сцепляются и передаются по наследству преимущественно совместно , составляя группу сцепления
Группа сцепления – гены , локализованные в одной хромосоме и наследующиеся преимущественно совместно
Число групп сцепления равно числу пар хромосом , т. е. гаплоидному числу хромосом ( т. к. в гомологичных хромосомах находятся одинаковые гены ) - у гетерогаметного пола (XY) число групп сцепления на одну больше за счёт Y-хромосомы ; у человека у женщин 23 группы сцепления , у мужчин – 24 ; у вирусов , бактерий и сине-зелёных водорослей , имеющих одну хромосому , все гены принадлежат к одной группе сцепления
Причиной образования двух фенотипических классов , вместо ожидаемых четырёх , является образование у дигетерозиготы (АаВв ) только двух типов гамет ( АВ и ав ) в равном количестве , вследствие сцепления генов локализованных в одной хромосоме ( при независимом комбинировании дигетерозигота (АаВв) образует четыре сорта гамет в равном количестве – АВ , Ав , аВ и ав )
Если в анализирующем скрещивании поменять местами родительские формы , т.е. скрестить дигетерозиготную самку с дигомозиготным рецессивным самцом , то в F2 образуется четыре фенотипических класса в неравном количестве : 41,5% серых длиннокрылых , 41,5% чёрных короткокрылых , 8,5% серых короткокрылых и 8,5% чёрных длиннокрылых :
Р ♀ АаВв х ♂ аавв
G АВ , Ав , аВ , ав ав
F2 АаВв ; Аавв ; ааВв ; аавв
41,5% 8,5% 8,5% 41,5%
В F2 образуется 17% особей с перекомбинированными родительскими признаками - рекомбинантные или кроссоверные особи
Такое отклонение от ожидаемого при независимом расщеплении свидетельствует о наличии сцепления
Сцепление группы генов , локализованных в одной хромосоме , может быть полным и неполным
Причиной нарушения сцепления служит кроссинговер – перекрёст гомологичных хромосом при их коньюгации в профазе I мейотического деления и возможный обмен гомологичными локусами , вследствие разрыва хромосом в точках контакта . В результате возникают качественно новые хромосомы ( кроссоверные ) , содержащие участки ( гены ) как материнских , так и отцовских хромосом
Кроссинговер – обмен сегментами между гомологичными хромосомами , сопровождающийся рекомбинацией сцеплённых генов ( Т. Морган )
Генетическая рекомбинация – процесс обмена участками между гомологичными хромосомами в результате кроссинговера , приводящий к образованию гамет с новым сочетанием аллелей
биологическое значение кроссинговера заключается в создании новых , ранее не существовавших комбинаций генов ( комбинативная изменчивость ) и обеспечение повышения выживаемости организмов в процессе эволюции
В результате кроссинговера дигетерозиготная особь со сцеплённой парой признаков образует не два а четыре сорта гамет , причём в неравном количестве ( АВ , ав – родительские гаметы ; в сумме их всегда более 50% и аВ , Ав – кроссоверных или рекомбинантных гамет , в сумме всегда менее 50 %)
появление рекомбинантных особей ( по 8,5% каждого типа ) обусловленно нарушением сцепления генов при кроссинговере – неполное сцепление
Чем дальше друг от друга расположены гены в хромосоме , тем выше вероятность перекрёста и кроссинговера и тем больше процент кроссоверных гамет и больший процент рекомбинантных особей , отличных от родителейЧастота рекомбинаций ( кроссинговера ) вычисляется по формуле
Где x – частота рекомбинаций ( расстояние между генами в морганидах ) ; а – количество особей в первой кроссоверной группе ; с – количество особей во второй кроссоверной группе ; n – общее число потомков в данном опыте
Анализ частоты рекомбинаций при неполном сцеплении позволяет установить :
Относительное расстояние между генами , расположенными в одной хромосоме ; оно определяется по проценту кроссинговера
процент кроссинговера между двумя генами равен сумме процентов рекомбинантных особей , отличных от родителей ; в нашем примере было 17% потомков с новыми комбинациями признаков
за единицу расстояния между генами , находящимися в одной хромосоме принята морганида ( 1 морганида равняется 1% кроссинговера , т. е. эквивалентна 1% кроссоверных гамет ) ; в нашем примере расстояние между генами , определяющими окраску тела и развитие крыльев , равно 17% кроссинговера , или 17 морганидам ( другие сочетания генов дрозофилы отличаются иной частотой кроссинговера )
процент кроссинговера для разных пар генов колеблется от долей единицы до пятидесяти , не превышая , однако , последнюю цифру ( практически всегда меньше 50) ; при постоянных условиях для каждой пары генов одной хромосомы это значение постоянно
при расстояниив 50 морганид и более признаки наследуются независимо , несмотря на то , что гены локализуются в одной хромосоме
Правило Моргана – частота ( процент ) кроссинговера между двумя неаллельными генами , расположенными в одной хромосоме , прапорциональна расстоянию между ними т. е. сила сцепления генов обратно прапорциональна расстоянию между ними в хромосоме (чем ближе друг к другу расположены гены , тем реже между ними происходит кроссинговер и наоборот )
Локализацию генов в одной или разных парах хромосом
частота рекомбинаций при анализирующем скрещивании менее 50% свидетельствует о сцеплённом наследовании и нахождении пары генов в одной хромосоме ( при значительном расстоянии между генами частота рекомбинаций приблизится к 50% , т.е. значению, соответствующему независимому расщеплению )
Линейный порядок и взаиморасположение генов в хромосоме ; составление генетических и цитоло- гических карт хромосом ( карт групп сцепления )
Генетическая карта хромосомы – графическое изображение расстояний между генами в группах сцепления , выраженное в процентах кроссинговера ( схема взаимного расположения генов , находящихся в одной группе сцепления )
Цитологическая карта хромосомы – набор и локализация определённых генов в физических райлнах хромосом
составление карт хромосом основано на учёте частот рекомбинаций ( процента кроссинговера ) между генами , относящимися к одной группе сцепления и постулате о линейном расположении генов
Рассмотрим три гена А , В и С , которые наследуются сцеплённо , т. е. находятся в одной группе сцепления . В дигибридном скрещивании установлены частоты кроссинговера между ними : А – В – 5% , А – С –12% , В – С – 7% . Порядок расположения генов в хромосоме возможен только следующий 5% 7%
А В С
12%
Наиболее полно изучена генетика и построены генетические карты хромосом у дрозофилы , имеющей 500 генов в 4 группах сцепления , кукурузы 400 генов в 10 группах сцепления , мыши , дрожжей , гороха пшеницы , томата , у человека из 23 пар хромосом выявлено всего 10 групп сцепления с небольшим числом генов в каждой группе
У самцов дрозофилы кроссинговер практически не происходит , поэтому у дигетерозиготных самцов гены , расположенныне в одной хромосоме , обнаруживают полное сцепление , т. е. наследуются совместно ( такие самцы образуют только два родительских сорта гамет в равном количестве – АВ, ав и не приводят к образованию рекомбинантных потомков )
Основные положения хромосомной теории наследственности
Сформулированы Т. Морганом и его школой в 1911 – 1920 годах
Признаки организмов формируются под воздействием генов , находящихся в хромосомах ; различные хромосомы содержат неодинаковое число генов ; набор генов каждой из негомологичных хромосом уникален
Каждый ген занимает в хромосоме определённое место ( локус ) ; аллельные гены занимают идентичные локусы гомологичных хромосом
Гены расположены в хромосоме линейно по всей её длинне в определённой последовательности
Гены одной хромосомы образуют группу сцепления и наследуются преимущественно совместно, сила сцепления находится в обратной зависимости от расстояния между генами ; число групп сцепления равняется числу хромосом в гаплоидном наборе
Между гомологичными хромосомами может происходить обмен аллельными генами ( кроссинговер ) , частота которого прапорциональна расстоянию между генами
Каждый биологический вид обладает спецефическим набором ( количество , форма , размер и расположение ) хромосом – кариотипом
