
- •2) Естественный способ описания движения материальной точки. Нормальное и тангенциальное ускорение. Радиус кривизны траектории.
- •3) Движение материальной точки по окружности. Угловое перемещение. Угловая скорость. Угловое ускорение. Связь между линейными угловыми величинами.
- •5) Динамика поступательного движения твердого тела. Инерциальные системы отсчета. Сила. Законы Ньютона и их современная трактовка.
- •8) Консервативные и диссипативные силы. Потенциальная энергия, работа сил(6).
- •7) Работа и мощность. Кинетическая энергия, и ее связь с работой внешних и внутренних сил.
- •10) Поле сил. Характеристики поля. Градиент потенциала.
- •9) Потенциальная энергия и ее связь с силой, действующей на систему материальных точек. Эквипотенциальные поверхности.
- •11) Кинетическая энергия поступательного и вращательного движения твердого тела. Полная механическая энергия. Закон сохранения полной механической энергии.
- •12) Момент инерции твердого тела. Свойства момента инерции. Вывод момента инерции однородного сплошного цилиндра. Теорема Штейнера-Гюйгенса.
- •16) Принцип относительности Галилея.
- •24) Идеальный газ. Уравнения состояния идеального газа. Основное уравнение молекулярно-кинетической теории идеального газа.
- •Закон взаимосвязи массы и энергии
- •21) Стационарное течение идеальной жидкости по трубе. Линии тока. Трубка тока. Уравнение неразрывности. Уравнение Бернулли.
- •22) Силы вязкого трения. Формула Ньютона для вязкости. Течение вязкой жидкости по трубам. Расход жидкости. Формула Пуазейля.
- •25) Распределение Больцмана. Распределение Максвелла. Скорости теплового движения молекул.
- •27) Адиабатический процесс. Уравнение Пуассона.
- •31) Вероятность состояния. Статистический вес состояния. Второе начало термодинамики, отражающее его статистический смысл.
- •28) Первое начало термодинамики. Применение первого начала термодинамики к изопроцессам.
- •30) Энтропия. Второе и третье начало термодинамики. Изменение энтропии в процессах идеального газа.
- •34) Потенциальный характер электростатического поля. Потенциал. Связь между напряженностью и потенциалом. Графическое представление электрического поля. Эквипотенциальные поверхности.
- •Графическое изображение электрических полей.
- •33) Поток вектора. Теорема Остроградского-Гаусса и её применении к расчету электрических полей. Поле заряженной плоскости, двух разноименно заряженных плоскостей, заряженной сферы.
- •37) Основные уравнения электростатики диэлектриков. Электрическое смещение.
- •39) Энергия системы зарядов. Энергия и плотность энергии электрического поля.
- •40) Электрический ток, его характеристики и условия существования. Электродвижущая сила, напряжение. Закон Ома в интегральной и дифференциальной формах.
- •41) Закон Джоуля-Ленца в интегральной и дифференциальной формах. Удельная мощность тока.
- •42) Классическая электронная теория электропроводимости металлов и ее экспериментальное доказательство.
- •43) Магнитное поле и его графическое представление. Вектор магнитной индукции. Закон Био-Савара-Лапласа и его применение к расчету магнитных полей (поле прямого тока, поле кругового тока).
- •Закон Био-Савара.
- •44) Магнитный поток. Теорема Остроградского-Гаусса для магнитного поля в вакууме. Теорема о циркуляции вектора магнитной индукции, и её применении для расчета поля прямого тока, соленоида.
- •47) Гипотеза Ампера. Магнитные моменты электронов и атомов. Намагниченность. Напряженность магнитного поля.
- •48) Магнитное поле в веществе. Классификация магнетиков. Элементы теории ферромагнетизма.
- •49) Опыты Фарадея. Закон фарадея для электромагнитной индукции. Правило Ленца.
- •51) Работа по перемещению проводника и контура с током в магнитном поле.
- •52) Поведение контура с током в магнитном поле.
- •53) Энергия и плотность энергии магнитного поля.
- •55) Система уравнений Максвелла в интегральной форме. Электромагнитные волны.
- •56) Колебания. Сложение гармонических колебаний одного направления с одинаковыми частотами. Векторная диаграмма колебаний. Биения.
- •60) Вынужденные колебания в электрическом колебательном контуре (дифференциальное уравнение и его решение). Резонанс и резонансные кривые.
- •Резонанс.
- •Резонансные кривые.
60) Вынужденные колебания в электрическом колебательном контуре (дифференциальное уравнение и его решение). Резонанс и резонансные кривые.
Чтобы
в реальной колебательной системе
осуществлять незатухающие колебания,
надо компенсировать каким-либо потери
энергии. Такая компенсация возможна,
если использовать какой-либо периодически
действующего фактора X(t), который
изменяется по гармоническому закону:
При
рассмотрении механических колебаний,
то роль X(t) играет внешняя вынуждающая
сила
(1)
С
учетом (1) закон движения для пружинного
маятника (формула (9) предыдущего раздела)
запишется как
Используя
формулу для циклической частоты свободных
незатухающих колебаний пружинного
маятника и (10) предыдущего раздела,
получим уравнение
(2)
При
рассмотрении электрического колебательный
контура роль X(t) играет подводимая к
контуру внешняя соответсвующим образом
периодически изменяющаяся по гармоническому
закону э.д.с. или переменное
напряжение
(3)
Тогда
дифференциальное уравнение колебаний
заряда Q в простейшем контуре, используя
(3), можно записать как
Зная
формулу циклической частоты свободных
колебаний колебательного контура и
формулу предыдущего раздела (11), придем
к дифференциальному уравнению
(4)
Колебания,
которые возникают под действием внешней
периодически изменяющейся силы или
внешней периодически изменяющейся
э.д.с., называются соответственно вынужденными
механическими и вынужденными
электромагнитными колебаниями.
Уравнения
(2) и (4) приведем к линейному неоднородному
дифференциальному уравнению
(5) причем
далее мы будем применять его решение
для вынужденных колебаний в зависимости
от конкретного случая (x0 если
механические колебания равно F0/m,
в случае электромагнитных колебаний -
Um/L).
Решение
уравнения (5) будет равно (как известно
из курса дифференциальных уравнений)
сумме общего решения (5) однородного
уравнения (1) и частного решения
неоднородного уравнения. Частное решение
ищем в комплексной форме. Заменим правую
часть уравнения (5) на комплексную
переменную х0eiωt :
(6)
Частное
решение данного уравнения будем искать
в виде
Подставляя
выражение для s и его производных
(
и
)
в выражение (6), найдем
(7)
Поскольку
это равенство должно быть верным для
всех моментов времени, то время t из него
должно исключаться. Значит η=ω. Учитывая
это, из формулы (7) найдем величину s0 и
умножим ее числитель и знаменатель на
(ω02 -
ω2 -
2iδω)
Это
комплексное число представим в
экспоненциальной форме:
где
(8)
(9)
Значит,
решение уравнения (6) в комплексной форме
будет иметь вид
Его
вещественная часть, которая является
решением уравнения (5), равна
(10) где
А и φ определяются соответственно
формулами (8) и (9).
Резонанс.
Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы имеет немонотонный характер. Резкое увеличение амплитуды вынужденных колебаний при приближении частоты со вынуждающей силы к собственной частоте со0 осциллятора называется резонансом. Формула дает выражение для амплитуды вынужденных колебаний в пренебрежении трением. Именно с этим пренебрежением связано обращение амплитуды колебаний в бесконечность при точном совпадении частот. Реально амплитуда колебаний в бесконечность, конечно же, обращаться не может. Это означает, что при описании вынужденных колебаний вблизи резонанса учет трения принципиально необходим. При учете трения амплитуда вынужденных колебаний при резонансе получается конечной. Она будет тем меньше, чем больше трение в системе. Вдали от резонанса формулой можно пользоваться для нахождения амплитуды колебаний и при наличии трения, если оно не слишком сильное. Более того, эта формула, полученная без учета трения, имеет физический смысл только тогда, когда трение все же есть. Дело в том, что само понятие установившихся вынужденных колебаний применимо только к системам, в которых есть трение.
Если бы трения совсем не было, то процесс установления колебаний продолжался бы бесконечно долго. Реально это означает, что полученное без учета трения выражение для амплитуды вынужденных колебаний будет правильно описывать колебания в системе только спустя достаточно большой промежуток времени после начала действия вынуждающей силы. Слова «достаточно большой промежуток времени» означают здесь, что уже закончился переходный процесс, длительность которого совпадает с характерным временем затухания собственных колебаний в системе. При малом трении установившиеся вынужденные колебания происходят в фазе с вынуждающей силой при со и в противофазе при, как и в отсутствие трения. Однако вблизи резонанса фаза меняется не скачком, а непрерывно, причем при точном совпадении частот смещение отстает по фазе от вынуждающей силы на (на четверть периода). Скорость изменяется при этом в фазе с вынуждающей силой, что обеспечивает наиболее благоприятные условия для передачи энергии от источника внешней вынуждающей силы к осциллятору.