
- •2) Естественный способ описания движения материальной точки. Нормальное и тангенциальное ускорение. Радиус кривизны траектории.
- •3) Движение материальной точки по окружности. Угловое перемещение. Угловая скорость. Угловое ускорение. Связь между линейными угловыми величинами.
- •5) Динамика поступательного движения твердого тела. Инерциальные системы отсчета. Сила. Законы Ньютона и их современная трактовка.
- •8) Консервативные и диссипативные силы. Потенциальная энергия, работа сил(6).
- •7) Работа и мощность. Кинетическая энергия, и ее связь с работой внешних и внутренних сил.
- •10) Поле сил. Характеристики поля. Градиент потенциала.
- •9) Потенциальная энергия и ее связь с силой, действующей на систему материальных точек. Эквипотенциальные поверхности.
- •11) Кинетическая энергия поступательного и вращательного движения твердого тела. Полная механическая энергия. Закон сохранения полной механической энергии.
- •12) Момент инерции твердого тела. Свойства момента инерции. Вывод момента инерции однородного сплошного цилиндра. Теорема Штейнера-Гюйгенса.
- •16) Принцип относительности Галилея.
- •24) Идеальный газ. Уравнения состояния идеального газа. Основное уравнение молекулярно-кинетической теории идеального газа.
- •Закон взаимосвязи массы и энергии
- •21) Стационарное течение идеальной жидкости по трубе. Линии тока. Трубка тока. Уравнение неразрывности. Уравнение Бернулли.
- •22) Силы вязкого трения. Формула Ньютона для вязкости. Течение вязкой жидкости по трубам. Расход жидкости. Формула Пуазейля.
- •25) Распределение Больцмана. Распределение Максвелла. Скорости теплового движения молекул.
- •27) Адиабатический процесс. Уравнение Пуассона.
- •31) Вероятность состояния. Статистический вес состояния. Второе начало термодинамики, отражающее его статистический смысл.
- •28) Первое начало термодинамики. Применение первого начала термодинамики к изопроцессам.
- •30) Энтропия. Второе и третье начало термодинамики. Изменение энтропии в процессах идеального газа.
- •34) Потенциальный характер электростатического поля. Потенциал. Связь между напряженностью и потенциалом. Графическое представление электрического поля. Эквипотенциальные поверхности.
- •Графическое изображение электрических полей.
- •33) Поток вектора. Теорема Остроградского-Гаусса и её применении к расчету электрических полей. Поле заряженной плоскости, двух разноименно заряженных плоскостей, заряженной сферы.
- •37) Основные уравнения электростатики диэлектриков. Электрическое смещение.
- •39) Энергия системы зарядов. Энергия и плотность энергии электрического поля.
- •40) Электрический ток, его характеристики и условия существования. Электродвижущая сила, напряжение. Закон Ома в интегральной и дифференциальной формах.
- •41) Закон Джоуля-Ленца в интегральной и дифференциальной формах. Удельная мощность тока.
- •42) Классическая электронная теория электропроводимости металлов и ее экспериментальное доказательство.
- •43) Магнитное поле и его графическое представление. Вектор магнитной индукции. Закон Био-Савара-Лапласа и его применение к расчету магнитных полей (поле прямого тока, поле кругового тока).
- •Закон Био-Савара.
- •44) Магнитный поток. Теорема Остроградского-Гаусса для магнитного поля в вакууме. Теорема о циркуляции вектора магнитной индукции, и её применении для расчета поля прямого тока, соленоида.
- •47) Гипотеза Ампера. Магнитные моменты электронов и атомов. Намагниченность. Напряженность магнитного поля.
- •48) Магнитное поле в веществе. Классификация магнетиков. Элементы теории ферромагнетизма.
- •49) Опыты Фарадея. Закон фарадея для электромагнитной индукции. Правило Ленца.
- •51) Работа по перемещению проводника и контура с током в магнитном поле.
- •52) Поведение контура с током в магнитном поле.
- •53) Энергия и плотность энергии магнитного поля.
- •55) Система уравнений Максвелла в интегральной форме. Электромагнитные волны.
- •56) Колебания. Сложение гармонических колебаний одного направления с одинаковыми частотами. Векторная диаграмма колебаний. Биения.
- •60) Вынужденные колебания в электрическом колебательном контуре (дифференциальное уравнение и его решение). Резонанс и резонансные кривые.
- •Резонанс.
- •Резонансные кривые.
52) Поведение контура с током в магнитном поле.
Пусть
в однородное магнитное поле помещена
рамка с током (рис. 4.13). Тогда силы
Ампера, действующие на боковые стороны
рамки, будут создавать вращающий момент,
величина которого пропорциональна
магнитной индукции, силе тока в рамке,
ее площади S и
зависит от угла a между вектором
и
нормалью к площади
:
Направление нормали выбирают так, чтобы в направлении нормали перемещался правый винт при вращении по направлению тока в рамке.
Максимальное
значение вращательный момент имеет
тогда, когда рамка устанавливается
перпендикулярно магнитным силовым
линиям:
.
Это выражение также можно использовать для определения индукции магнитного поля:
.Величину,
равную произведению
,
называют магнитным моментом контура Рт.
Магнитный момент есть вектор, направление
которого совпадает с направлением
нормали к контуру. Тогда вращательный
момент можно записать
.
При угле a = 0 вращательный момент равен нулю. Значение вращательного момента зависит от площади контура, но не зависит от его формы. Поэтому на любой замкнутый контур, по которому течет постоянный ток, действует вращательный момент М, который поворачивает его так, чтобы вектор магнитного момента установился параллельно вектору индукции магнитного поля.
53) Энергия и плотность энергии магнитного поля.
Проводник,
c протекающим по нему электрическим
ток, всегда окружен магнитным полем,
причем магнитное поле исчезает и
появляется вместе с исчезновением и
появлением тока. Магнитное поле, подобно
электрическому, является носителем
энергии. Логично предположить, что
энергия магнитного поля совпадает с
работой, затрачиваемой током на создание
этого поля.
Рассмотрим
контур индуктивностью L, по которому
протекает ток I. С этим контуром сцеплен
магнитный поток Ф=LI, поскольку индуктивность
контура неизменна, то при изменении
тока на dI магнитный поток изменяется
на dФ=LdI. Но для изменения магнитного
потока на величину dФ следует совершить
работу dА=IdФ=LIdI. Тогда работа по созданию
магнитного потока Ф равна
Значит,
энергия магнитного поля, которое связано
с контуром,
(1)
Энергию
магнитного поля можно рассматривать
как функцию величин, которые характеризуют
это поле в окружающем пространстве. Для
этого рассмотрим частный случай —
однородное магнитное поле внутри
длинного соленоида. Подставив в формулу
(1) формулу индуктивности соленоида,
найдем
Так
как I=Bl/(μ0μN)
и В=μ0μH
, то
(2) где
Sl =
V — объем соленоида.
Магнитное
поле внутри соленоида однородно и
сосредоточено внутри него, поэтому
энергия (2) заключена в объеме соленоида
и имеет с нем однородное распределение
с постоянной объемной
плотностью
(3)
Формула
(3) для объемной плотности энергии
магнитного поля имеет вид, аналогичный
выражению для объемной плотности энергии
электростатического поля, с тем отличием,
что электрические величины заменены в
нем магнитными. Формула (3) выводилась
для однородного поля, но она верна и для
неоднородных полей. Формула (3) справедлива
только для сред, для которых линейная
зависимость В
от Н , т.е. оно относится только к пара-
и диамагнетикам.