Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Книги / Учебное пособие по гидрогазодинамике.doc
Скачиваний:
84
Добавлен:
12.06.2014
Размер:
3.15 Mб
Скачать

7.4 Интегрирование уравнения движения для установившегося течения

Интегрирование уравнения движения (7.17) возможно лишь в случае, когда его правая часть равна нулю. Из теории определителей известно, что признаками равенства нулю являются: равенство нулю какой-либо строки или пропорциональность элементов одной строки элементам другой.

Исходя из физического смысла имеем четыре возможных случая:

(7.18)

(7.19)

(7.20)

(7.21)

Для любого из них можем записать

И после интегрирования

(7.22)

Если из массовых сил действует только сила тяжести, то, как показано в разделе гидростатики,

и (7.22) принимает вид

(7.23)

Еще раз обратим внимание на то, что вид уравнения (7.23) одинаков вне зависимости от того, какой из четырех случаев равенства нулю определителя рассматривается. Однако смысл интеграла и область его применения различны. Именно поэтому следует разобраться в этом вопросе подробней.

Первый случай, как известно, является признаком потенциальности движения. Интеграл (7.23) в этом случае называют интегралом Коши-Лагранжа. Он справедлив для любых точек жидкости, движущейся без вращения частиц, т.е. потенциально.

Второй случай является признаком коллинеарности вектора вихря и вектора скорости. Это весьма редкий случай так называе­мого винтового движения.

Третий случай характеризует движение жидкой частицы вдоль вихревой линии, а четвертый - движение вдоль линии тока. Интеграл (7.23) при этом носит название интеграла Бернулли. Он справедлив как для потенциального, так и для вихревого движений. Именно этот случай и будет интересовать нас в дальнейшем.

7.5 Упрощенный вывод уравнения Бернулли.

В ряде пособий и учебников рассматривается упрощенный вывод уравнения Бернулли. Поэтому с целью расширения и углубления представления об этом основополагающем уравнении механики жидкости представляется целесообразным рассмотреть и этот подход. В основу его положено принимаемое без каких-либо доказательств положение о том, что рассматривается жидкая частица, движущаяся вдоль линии тока. После чего производится преобразование системы дифференциальных уравнений Эйлера (7.1) путем умножения каждой из его проекций соответственно на dx, dy и dz и почленного их сложения аналогично тому, как это делалось в гидростатике. Это преобразование уже рассматривалось в случае, когда из массовых сил действуют лишь силы тяжести (см. раздел «Гидро­статика»). Оно приводит к соотношению: . Поэтому рассмотрим лишь правую часть. Имеем

Считая, что ;;, можем записать:

Таким образом

либо

(7.24)

Это выражение называют уравнением Бернулли в дифференциальной форме. При условии (для несжимаемой жидкости) интегрирование его дает

(7.25)

т.е. соотношение (7.23).

Очевидно, для обеспечения математической строгости следовало бы доказать, что вдоль линии тока проекции вектора скорости могут быть представлены не как частные, а как полные производные от соответствующих координат частицы. Но при этом вывод уравнения Бернулли утратил бы свою простоту.

7.6 Энергетический смысл уравнения Бернулли

Прежде чем приступить к анализу физического содержания полученного соотношения, следует вспомнить одно важное обстоятельство. При введении понятия о струйке было показано (см. раздел «Кинематика»), что одним из ее свойств является равномерное распределение скоростей в пределах любого ее поперечного сечения. Это означает, что соотношение (7.25) остается справедливым для любой линии тока, проходящей внутри струйки. Поэтому уравнение (7.25) можно назвать уравнением Бернулли для струйки идеальной жидкости. Для двух произвольных поперечных сечений струйки можно записать

(7.26)

Выясним физический смысл величин, входящих в уравнение Бернулли. Любое правильное физическое соотношение размерностно однородно, т.е. все его члены имеют одинаковую размерность, поэтому достаточно рассмотреть один из его членов. Наиболее удобно обратиться к третьему - . Эта величина выражается в м22. Умножим и разделим числитель и знаменатель на кг, что дает:

Из чего следует, что каждый член уравнения выражает энергию, отнесенную к единице массы, т.е. удельную энергию. Это позволяет придать уравнению Бернулли энергетический смысл. Первые два члена выражают удельную потенциальную энергию (положения - gz и давления - ), а третий - удельную кинетическую энергию. Следовательно, полная удельная энергия в любом сечении струйки остается неизменной. Другими словами, уравнение Бернулли выражает закон сохранения энергии в ее простейшей форме - форме сохранения механической энергии.