Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
7, 8, 10, 19, 20, 27-29, 35, 36,41.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
116.21 Кб
Скачать

Матричная запись множественной линейной модели регрессионного анализа:

Y = Xb + e

где Y - случайный вектор - столбец размерности (n x 1) наблюдаемых значений результативного признака (y1, y2,..., yn);  X - матрица размерности [n x (k+1)] наблюдаемых значений аргументов;  b - вектор - столбец размерности [(k+1) x 1] неизвестных, подлежащих оценке параметров (коэффициентов регрессии) модели;  e - случайный вектор - столбец размерности (n x 1) ошибок наблюдений (остатков).

На практике рекомендуется, чтобы n превышало k не менее, чем в три раза.

Задачи регрессионного анализа  Основная задача регрессионного анализа заключается в нахождении по выборке объемом n оценки неизвестных коэффициентов регрессии b0, b1,..., bk. Задачи регрессионного анализа состоят в том, чтобы по имеющимся статистическим данным для переменных Xi и Y:

·       получить наилучшие оценки неизвестных параметров b0, b1,..., bk;

·       проверить статистические гипотезы о параметрах модели;

·       проверить, достаточно ли хорошо модель согласуется со статистическими данными (адекватность модели данным наблюдений).

Построение моделей множественной регрессии состоит из следующих этапов:

1.     выбор формы связи (уравнения регрессии);

2.     определение параметров выбранного уравнения;

3.     анализ качества уравнения и поверка адекватности уравнения эмпирическим данным, совершенствование уравнения.

Множественная регрессия:

·       Множественная регрессия с одной переменной

·       Множественная регрессия с двумя переменными

·       Множественная регрессия с тремя переменными

  1. ешение проблемы выбора модели (с ограничением и без ограничения).

Оптимальный” состав факторов, вкл в эконом модель, явл одним из основных условий ее “хорошего” качества, понимаемого и как соответствие формы модели теор концепции, выражающей содержание взаимосвязей между рассматриваемыми переменными, и как точность предсказания на рассматриваемом интервале времени t=1Можно выделить два основных подхода к решению этой проблемы

Априорный подход к отбору Метод вкл. в модель переменных(до построения модели) с помощью него проводится исследование характера и силы взаимосвязей между расс-ми переменными, по результатам к-го в модель вкл.факторы наиболее значимые по своему непосредственному влиянию на зависимую переменную Y. Степень влияния оценивает выборочный коэф-т корреляции rxy Считается что при [r]>0.7 установленную зависимость целесообразно исп-ть в анализе планировании, прогнозировании и в решении др.практических вопросов.Рассматриваемые факторы не должны сильнокорр-ть степень тесноты связи между ними опред. Как rxy=∑(xi-xiср)(xj-xjср)/корень∑(xi-xiср)2(xj-xjср)2  i≠j На практике взаимосвязь между факторами признается сущ-ой если [rxy]>0.7, если они выражают одно и тоже явление, то один из факторов следует искл. Чтобы одна и таже причина не учитывалась дважды в модели. В модель вкл. те факторы к-ые боле сильно связаны с др.факторами. При наличии сильной колениарности фактороврекомендуется искл.тот фактор, теснота парной зависимости к-ого меньше тесноты межфакторной связи. Для опред. Вкл. расс-ых переменных в модель или их невкл. Часто используется таблица (матрица) составленная из коэф-тов парной кор-ции.

Апостериорный подход к отбору факторов Метод искл. из модели переменных. Предполагает первоначально вкл. в модель все отобранные на этапе содержательного анализа факторы и на основе анализа хар-к качества построеноой модели отбирать состав факторов. Одну из групп явл. Хар-ки выр-щие силу влияния каждого из факторов на зависимую переменную У,т.е. силу влияния оценок параметров b1,b2,…,bm построенной моделиОкончательное решение о вкл.или искл.принимается на основе анализа всего комплекса ее харак-тик качества с учетом содержательной стороны проблемы взаимосвязей между зависимой и независимой переменными.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]