- •Метод наименьших квадратов.
- •Свойства коэффициентов регрессии.
- •Нелинейная регрессия. Методы линеаризации.
- •Приведение к линейному виду регрессий, нелинейных по объясняющим переменным
- •Приведение к линейному виду регрессий, нелинейных по параметрам
- •Функциональная спецификация модели парной регрессии.
- •Матричная запись множественной линейной модели регрессионного анализа:
- •Истемы регрессионных (одновременных) уравнений.
- •Структурная и приведенная формы модели.
- •Модели распределенных лагов.
Матричная запись множественной линейной модели регрессионного анализа:
Y = Xb + e
где Y - случайный вектор - столбец размерности (n x 1) наблюдаемых значений результативного признака (y1, y2,..., yn); X - матрица размерности [n x (k+1)] наблюдаемых значений аргументов; b - вектор - столбец размерности [(k+1) x 1] неизвестных, подлежащих оценке параметров (коэффициентов регрессии) модели; e - случайный вектор - столбец размерности (n x 1) ошибок наблюдений (остатков).
На практике рекомендуется, чтобы n превышало k не менее, чем в три раза.
Задачи регрессионного анализа Основная задача регрессионного анализа заключается в нахождении по выборке объемом n оценки неизвестных коэффициентов регрессии b0, b1,..., bk. Задачи регрессионного анализа состоят в том, чтобы по имеющимся статистическим данным для переменных Xi и Y:
· получить наилучшие оценки неизвестных параметров b0, b1,..., bk;
· проверить статистические гипотезы о параметрах модели;
· проверить, достаточно ли хорошо модель согласуется со статистическими данными (адекватность модели данным наблюдений).
Построение моделей множественной регрессии состоит из следующих этапов:
1. выбор формы связи (уравнения регрессии);
2. определение параметров выбранного уравнения;
3. анализ качества уравнения и поверка адекватности уравнения эмпирическим данным, совершенствование уравнения.
Множественная регрессия:
· Множественная регрессия с одной переменной
· Множественная регрессия с двумя переменными
· Множественная регрессия с тремя переменными
ешение проблемы выбора модели (с ограничением и без ограничения).
Оптимальный” состав факторов, вкл в эконом модель, явл одним из основных условий ее “хорошего” качества, понимаемого и как соответствие формы модели теор концепции, выражающей содержание взаимосвязей между рассматриваемыми переменными, и как точность предсказания на рассматриваемом интервале времени t=1Можно выделить два основных подхода к решению этой проблемы
Априорный подход к отбору Метод вкл. в модель переменных(до построения модели) с помощью него проводится исследование характера и силы взаимосвязей между расс-ми переменными, по результатам к-го в модель вкл.факторы наиболее значимые по своему непосредственному влиянию на зависимую переменную Y. Степень влияния оценивает выборочный коэф-т корреляции rxy Считается что при [r]>0.7 установленную зависимость целесообразно исп-ть в анализе планировании, прогнозировании и в решении др.практических вопросов.Рассматриваемые факторы не должны сильнокорр-ть степень тесноты связи между ними опред. Как rxy=∑(xi-xiср)(xj-xjср)/корень∑(xi-xiср)2(xj-xjср)2 i≠j На практике взаимосвязь между факторами признается сущ-ой если [rxy]>0.7, если они выражают одно и тоже явление, то один из факторов следует искл. Чтобы одна и таже причина не учитывалась дважды в модели. В модель вкл. те факторы к-ые боле сильно связаны с др.факторами. При наличии сильной колениарности фактороврекомендуется искл.тот фактор, теснота парной зависимости к-ого меньше тесноты межфакторной связи. Для опред. Вкл. расс-ых переменных в модель или их невкл. Часто используется таблица (матрица) составленная из коэф-тов парной кор-ции.
Апостериорный подход к отбору факторов Метод искл. из модели переменных. Предполагает первоначально вкл. в модель все отобранные на этапе содержательного анализа факторы и на основе анализа хар-к качества построеноой модели отбирать состав факторов. Одну из групп явл. Хар-ки выр-щие силу влияния каждого из факторов на зависимую переменную У,т.е. силу влияния оценок параметров b1,b2,…,bm построенной моделиОкончательное решение о вкл.или искл.принимается на основе анализа всего комплекса ее харак-тик качества с учетом содержательной стороны проблемы взаимосвязей между зависимой и независимой переменными.
