
- •От авторов
- •Дорогой читатель!
- •Введение
- •Чужеродные вещества
- •6. Разработка образовательных программ в области безопасности пищевой продукции и рационального питания.
- •Глава 1 научные и практические аспекты рационального питания
- •1.1. Основы физиологии питания
- •1.3. Религия и питание
- •Классификация типов питания [12]
- •1.4. Классические теории питания
- •3 Формула сбалансированного питания
- •1.5. Альтернативные теории питания
- •Контрольные вопросы
- •Литература
- •Глава 2 пищевая безопасность и основные критерии ее оценки
- •2.1. Эколого-социальные аспекты питания
- •2.2. Международная система обеспечения безопасности пищевой продукции
- •3.Перечень
- •2.3. Нормативно-законодательная основа
- •2.4. Оценка рисков и безопасности пищевой продукции
- •2.5. Сертификация пищевой продукции
- •2.6. Экологическая сертификация пищевой продукции
- •Контрольные вопросы
- •Литература
- •Глава 3 опасности микробного происхождения
- •3.1. Микробиологические показатели безопасности пищевой продукции
- •Сравнительная характеристика пищевых заболеваний [10]
- •3.2. Пищевые токсикоинфекции
- •3.2.1. Сальмонеллезы
- •3.3.2. Ботулизм
- •3.4. Микотоксикозы
- •3.4.1. Афлатоксикозы
- •5. Основные сведения о некоторых микотоксинах
- •6. Физико-химические свойства основных афлатоксинов
- •3.4.2. Отравление трихотеценами
- •3.3.4. Отравление патулином
- •3.4.5. Эрготизм
- •3.4.6. Микотоксикозы, вызванные микроскопическими грибами рода Alternaria
- •Глава 4
- •4.1. Питание и пищевой статус человека
- •4.2. Белки
- •10. Содержание белка в пищевых продуктах
- •4.3. Липиды
- •4.4. Углеводы
- •4.1.1. Усвояемые углеводы
- •4.4.2. Неусвояемые углеводы
- •4.5. Витамины
- •Содержание витамина а в продуктах питания
- •Содержание витамина е в пищевых продуктах
- •15. Содержание витамина с в пищевых продуктах
- •Содержание витамина в1 в пищевых продуктах
- •17. Содержание витамина в2 в пищевых продуктах
- •18. Содержание витамина в3 в пищевых продуктах
- •Содержание витамина в6 в основных пищевых продуктах
- •Содержание витамина в9 в основных пищевых продуктах
- •Содержание витамина в12в пищевых продуктах
- •22. Содержание биотина в пищевых продуктах
- •4.5.3. Витаминоподобные вещества
- •24. Содержание инозита в основных пищевых продуктах
- •25. Содержание витамина u в пищевых продуктах
- •26. Содержание натрия в пищевых продуктах
- •28. Содержание кальция в пищевых продуктах
- •29. Содержание фосфора в пищевых продуктах
- •30. Содержание магния в пищевых продуктах
- •31. Содержание железа в пищевых продуктах
- •32. Содержание цинка в пищевых продуктах
- •35. Микробиологические и паразитологические показатели питьевой воды
- •36. Нормативы физиологической полноценности питьевой воды
- •4.8. Снижение пищевой ценности продукции при хранении и переработке
- •4.8.3. Изменение витаминов
- •Контрольные вопросы
- •Литература
- •Глава 5
- •5.1. Загрязнение воздуха, воды и почвы
- •5.1.1. Воздушная среда
- •5.1.2. Водная среда
- •46. Классы качества воды по микробиологическим показателям
- •5.2. Классификация чужеродных загрязнителей -ксенобиотиков
- •5.3.1. Ртуть
- •49. Уровень ртути в крови кормящих матерей
- •5.3.4. Мышьяк
- •50. Значение взвешенного коэффициента Wm [3]
- •5.4.2. Источники и пути поступления радионуклидов в организм
- •57. Природные источники ионизирующего излучения
- •53. Искусственные источники излучения [3]
- •54. Вду активности йода-131 в пищевых продуктах и питьевой воде [4]
- •55. Вду суммарной активности цезия-134, цезия-137, стронция-90 в продуктах питания и питьевой воде [4]
- •56. Риск и ожидаемое число смертей от поражения
- •58. Отдаленные воздействия пестицидов на окружающую
- •60. Предельно допустимые остаточные количества
- •62. Гигиеническая классификация опасных и умеренно опасных пестицидов по аллергенности [19]
- •63. Гигиеническая классификация опасных пестицидов по мутагенности и канцерогенности [19]
- •64. Значения гигиенических нормативов для хлорорганических пестицидов
- •5.6. Нитраты, нитриты и нитрозосоединения
- •5.6.1. Основные источники нитратов и нитритов в пищевой продукции
- •66. Содержание нитрозосоединений в пищевых продуктах
- •68. Допустимые уровни содержания n-нитрозоаминов в
- •5.7. Полициклические ароматические и хлорсодержащие углеводороды
- •69. Допустимые уровни бенз(а)пирена в пищевой продукции
- •5.8. Диоксины и диоксиноподобные соединения
- •70. Эквиваленты токсичности (эт) пхдд и пхдф
- •71. Максимально допустимые уровни диоксинов в основных пищевых продуктах (Россия)
- •72. Предельно допустимые концентрации или уровни диоксинов в природных объектах и пищевых продуктах
- •5.9. Основные направления обеспечения
- •73. Пожизненные канцерогенные риски от воздействия химических веществ при их поступлении на уровне пдк [12]
- •74. Индивидуальные годовые риски смерти для населения России [12]
- •Глава 6
- •6.1. Генномодифицированные организмы: мифы и реальность
- •75. Площади возделывания трансгенных культур в некоторых странах мира (млн. Га) [35]
- •76. Объемы продаж трансгенных растений в мире
- •6.2. Генномодифицированные организмы: основные задачи и перспективы
- •77. Основные задачи генной инженерии растений (по Law, Euphitico, 1996, 86)
- •6.3. Основные принципы создания трансгенных растений
- •78. Краткая характеристика некоторых генов, применяемых в гмо[39]
- •79. Система контроля получения, использования и передачи гмо в сша (Aventis, 2000)
- •6.4. Биобезопасность генномодифицированных организмов
- •6.5. Пищевая токсиколого-гигиеническая оценка трансгенных культур
- •80. Данные о генетически модифицированных сельскохозяйственных культурах, разрешенных для реализации в России (для пищевой промышленности и реализации в пищевых целях)
- •81. Список продуктов, полученных из генетически модифицированных источников, не содержащих белок или днк, не подлежащих маркировке (негативный список)
- •82. Схема токсикологических исследований на экспериментальных животных [22]
- •83. Список продуктов, полученных из генетически
- •Контрольные вопросы
- •Литература
- •Глава 7
- •7.1. Химические компоненты растениеводческой пищевой продукции
- •7.1.1. Ингибиторы ферментов пищеварения
- •7.1.2. Лектины
- •7.1.3. Антивитамины
- •84. Массовая доля аскорбиновой кислоты и активность аскорбатоксидазы в продуктах растительного происхождения
- •85. Содержание щавелевой кислоты в продуктах растительного происхождения
- •7.1.5. Гликоалкалоиды
- •7.1.6. Цианогенные гликозиды
- •7.1.9. Токсины грибов
- •7.2. Химические компоненты марикультуры
- •7.2.1. Токсины моллюсков и ракообразных
- •7.2.2. Тетродотоксины
- •7.2.3. Галлюциногены
- •7.2.4. Ихтио-, ихтиокрино- и ихтиохемотоксины
- •7.2.5. Интоксикация сигуатера
- •7.2.6. Отравления сельдевыми рыбами
- •7.2.7. Скомброидное отравление
- •7.2.8. Токсины водорослей
- •Контрольные вопросы
- •Литература
- •Глава 8 пищевые добавки
- •8.1. Классификация и токсиколого-гигиеническая оценка
- •86. Токсичность веществ в зависимости от значения лд50
- •8.2.1. Улучшители консистенции
- •87. Гигиенические регламенты применения сложных эфиров жирных кислот и Сахаров в качестве пищевых добавок [5]
- •8.2.4. Вкусовые вещества
- •8.3. Консерванты
- •8.3.1. Антисептики
- •8.3.2. Антибиотики
- •88. Нормируемое остаточное содержание ветеринарных антибиотиков в мясных и молочных продуктах
- •8.3.3. Антиокислители и их синергисты
- •Естественные антиоксиданты
- •Синтетические антиоксиданты
- •Контрольные вопросы
- •Литература
- •Глава 9 технологические вспомогательные средства
- •9.1. Ускорители технологических процессов
- •9.5. Полирующие средства
- •89. Органические растворители, применяемые при производстве пищевых продуктов
- •9.8. Органические биокатализаторы и транквилизаторы
- •Контрольные вопросы
- •Литература
- •Глава 10 биологически активные добавки
- •90. Изменение образа жизни - изменение структуры питания [21]
- •10.2. Классификация и токсикологическая оценка
- •91. Производственные группы бад к пище [15]
- •10.3. Нутрицевтики
- •92. Типовая схема экспериментальной модели оценки эффективности нутрицевтиков
- •10.4. Парафармацевтики
- •10.5. Эубиотики
- •Контрольные вопросы
- •Литература
- •Глава 11 идентификация и фальсификация пищевой продукции
- •11.1. Идентификация пищевой продукции
- •11.2. Фальсификация пищевой продукции
- •93. Средства и способы фальсификации алкогольных напитков [2]
- •11.3. Маркировка пищевой продукции
- •11.4. Упаковочные материалы
- •94. Значения ubp для некоторых типов упаковки
- •Контрольные вопросы
- •Литература
- •Глава 12 социальные токсиканты
- •12.1. Наркотики
- •12.2. Табачный дым и курение
- •12.3. Кофеинсодержащие и алкогольные напитки
- •96. Содержание кофеина в напитках и продуктах
- •Контрольные вопросы
- •Литература
- •Глава 13 концепция безопасности пищевой продукции и питания
- •97. Сравнительный аминокислотный состав искусственной зернистой икры
- •13.2. Функциональные продукты питания
- •13.3. Основные принципы радиозащитного питания
- •13.4. Повышение иммунитета и детоксикация организма
- •13.5. Детское питание
- •98. Нормы суточной потребности в пищевых веществах и энергии детей раннего возраста
- •99. Суточная потребность в пищевых веществах и энергии детей дошкольного возраста
- •13.6. Геронтологическое питание
- •100. Рекомендуемое суточное потребление общего количества углеводов для людей пожилого и преклонного возраста
- •13.7. Лечебно-профилактическое питание
- •13.9. Питание в экстремальных условиях
- •Контрольные вопросы
- •Литература
- •Рекомендуемая литература
76. Объемы продаж трансгенных растений в мире
Год |
Объем продаж, млн. долларов США |
1995 |
75 |
1996 |
235 |
1997 |
670 |
1998 |
1500 |
1999 |
2300 |
2000 |
3000 |
2001 |
3800 |
2002 |
4250 |
2003 |
4750 |
2005 (прогноз) |
8000 |
2010 (прогноз) |
25000 |
С точки зрения мировых перспектив многие специалисты предсказывают хорошее будущее коммерческому использованию трансгенных растений. Предполагается, что в перспективе удельный вес площадей возделывания трансгенных культур в мировой структуре посевов составит по отдельным видам от 10 до 60%. Кроме того, трансгенные растения, устойчивые к вредителям и болезням, помогут снять остроту проблемы продовольствия и сократить затраты на химические средства защиты. Более того, замена традиционного набора химических средств потенциально уменьшит опасность загрязнения окружающей среды, а следовательно, обеспечит безопасность питания (рис. 45).
Рис. 45. Преимущества использования трансгенных растений
6.2. Генномодифицированные организмы: основные задачи и перспективы
Генетика,
являющаяся наукой будущего, зародилась
еще в XIX
веке.
' В 1865 г.
австрийский аббат Грегор Мендель
установил основные законы
наследственности, которые были забыты
и вновь открыты в 1900 г. независимо друг
от друга Гуго де Фризом, Карлом Корренсом
и Е. Чермаком. В 1869 г. Иоганн Фридрих
Мишер (Швейцария) открыл в ядрах клеток
нуклеиновые кислоты. Группа Нобелевского
лауреата Томаса Ханта Моргана в 30-е
годы прошлого столетия установила
основные законы хромосомной
наследственности. В 1927 г. советский
ученый Н. К. Кольцов предположил, что
молекулы биополимеров, входящие в
хромосомы, могут служить матрицами для
воспроизводства таких молекул. Эти
открытия явились первыми кирпичиками
в фундаменте современной биотехнологии.
Однако свое бурное развитие биотехнология
как наука
получила, начиная с 1953 г. после открытия
Фрэнсиса Крика (Великобритания) и Джеймса
Уотсона (США). Они показали, что
биологическая
функция ДНК -
воспроизводство,
копирование и передача наследственной
информации - обусловлена ее пространственным
строением и химическим
составом. Непосредственное возникновение
генной инженерии как нового
направления биотехнологии условно
можно отнести к 1970-72 гг. В этот период
ученые открыли ферменты, необходимые
для генной
инженерии — рестриктазу, лигазу,
ревертазу. В эти же годы появились
новые разработки по выделению генов,
их химическому синтезу, вводу
их в живые клетки и внедрению в геном
клеток. В 80-х годах XX
в. появились первые практические
результаты генной инженерии. В
1982-1983 гг. бельгийские ученые Гентского
государственного университета под
руководством проф. Марка Ван Монтегю
совместно с группой Дэюефа
Шелла из Кельнского Института
растениеводства им.
М. Планка (Германия) и ученые Вашингтонского
университета создали первые
трансгенные растения. Однако более 10
лет потребовалось, чтобы довести
лабораторные эксперименты до коммерческого
использования. С этой целью с 1986 по 1998
гг. в 45-ти странах проведено свыше 25
тыс. полевых испытаний (72% из них в США
и Канаде) 66 различных сортов и гибридов
генномодифицированных растений. К
началу 1998 г. в мире было уже зарегистрировано
около 100 видов трансгенных растений, в
том числе в США — 34, в Канаде - 30, в
Японии — 20, в странах Европейского
Союза — 9. В последующие годы трансгенные
растения стали шире внедряться в
практику. В 1992 г. в Китае начали промышленно
выращивать трансгенный табак, устойчивый
к насекомым. В 1994 г. в США было
зарегистрировано первое трансгенное
растение, предназначенное для употребления
в пищу, -томаты с увеличенным сроком
хранения. В 1999 г. уже было получено более
120 видов трансгенных растений.
Основные задачи генной инженерии трансгенных растений в современных условиях развития сельского хозяйства и общества довольно многообразны (табл. 77).