
- •2. Алгоритм и его свойства. Методы записи алгоритмов.
- •3.Булева алгебра и вопросы, связанные с ее применением
- •4.Векторы в трехмерном пространстве. Понятия правого ортонормированного базиса. Скалярное, векторное и смешанное произведения.
- •5.Виды уравнений плоскостей и прямых в пространстве. Условия их параллельности и перпендикулярности.
- •6.Группы, кольца, поля (определения и примеры)
- •7. Дискретные св. Числовые х-ки и их св-ва.
- •8. Ду, допускающие понижение порядка.
- •9. Ду не разрешенные относ-но производной. Ур-я Лагранжа и Клеро.
- •11. Дифференцируемось функций многих действительных переменных. Экстремумы функций многих действительных переменных.
- •12. Диалоговый и пакетный режим работы эвм с пользователем. Принципы функционирования мультипрограммных ос.
- •13. Элементарные функции комплексной переменной и их свойства.
- •14. Общие понятия исчисления.
- •Двійкова система числення.
- •15. Застосування теорії операційного числення до розв’язання диференціальних рівнянь.
- •16. Зв’язані динамічні структури даних: черги і стеки.
- •17. Интегрирование фкп. Интеграл по замкнутому контуру от аналитической функции. Интегральная формула Коши и следствия из нее.
- •18. Интерполирование функций. Интерпол. Полином лагранжа
- •19.Интуитивное и техническое понятие информации. Понятие бита и байта. Модель оперативной памяти эвм.
- •20. Квадратичные формы: ранг, канонический и нормальный виды, сигнатура. Способы сведения к каноническому виду.
- •21. Классификация изолированных особых точек фкп. Интегральный вычет.
- •22. Классическое определение вероятности. Геометрическая вероятность. Формула полной вероятности.Формула Байеса.
- •Событие наз. Простым (элементарным), если оно состоит только лишь из одного элементарного исхода, и составным – если k исходов.
- •Классическое определение вероятности Колмагорова
- •Геометрическая вероятность
- •Конструкторы и деструкторы особые члены класса, служащие для инициализации и уничтожения объекта.
- •24. Кратные интегралы (двойные, тройные): определение, основные свойства. Применение.
- •25. Криволинейные и поверхностные интегралы. Определение. Основные свойства. Применение.
- •26. Линии 2-го порядка
- •27. Лінійні диференціальні рівняння першого порядку та методи їх розв’язування.
- •29. Неодн. Лин. Ду n-го порядка с пост. Коэф-тами, спец. Прав. Часть.
- •Метод неопр коэф-тов.
- •31.Линейные операторы. Собственные векторы и собственные значения линейных операторов.
- •32.Матрицы. Операци над матрицами. Определители, миноры, алгебраические дополнения.
- •33.Методы комбинаторного анализа и их применение для реш-я задач.
- •1)Элементарные рекуррентные соотн-я.
- •3)Метод включения и исключения.
- •34. Метрические пространства
- •35.Многочлены над полями q,r,с. Основная tr алгебры.
- •36. Непрерывность функции одной переменной. Свойства непрерывных функций. Понятие точек разрыва и их классификация.
- •Точки разрыва
- •Свойства функций, непрерывных в точке
- •Глобальные свойства непрерывных функций
- •37.Обратные матрицы. Методы нахождения обратной матрицы.
- •38. Определенный инт-л и его св-ва
- •39. Определения теории графов. Задачи оптимизации на графах.
- •42.Основные типы ду 1-го порядка
- •Уравнения с разделенными и разделяющимися пер-ми.
- •Уравнение Бернулли
- •43. Основные типы диалогов эвм-человек.
- •44. Основные типы уравнений матфизики.
- •Теплопроводность стержня
- •Теплопроводность пластины
- •Стационарный случай
- •Гельмгольца
- •45. Основные логические блоки эвм и их назначения.
- •46. Поверхности 2-го порядка.
- •47.Повторение испытании. Формула Бернулли. Формула Пуассона. Локальная и интегральная теоремы Муавра и Лапласа.
- •48. Поле комплексных чисел. Различные формы записи комплексных чисел. Формула муавра.
- •50. Понятие математического (программного) обеспечения эвм. Инструментальное математическое обеспечение. Примеры.
- •51. Поняття обчислювальної складності алгоритму. Параметри аналізу обчислювальної складності. Поняття обчислювальної складності
- •52. Понятие ос, ее основные компоненты. Понятие ресурса эвм.
- •53. Понятие первообр-й ф-и, неопр. Инт-ла и их св-ва.
- •1)Метод замены пер-й
- •2)Метод интегр-я по частям
- •Простое наследование
- •Множественное наследование
- •55. Понятие функции комплексной переменной. Предел, непрерывность, производная функции комплексной переменной. Условия Коши-Римана дифференцируемости функции.
- •Сравнение функций.
- •57.Прямая на плоскости. Уравнение прямой на плоскости в прямоугольной сис. Координат.
- •58.Ранг матрицы, способы его вычисления. Теорема Кронекера – Капелли.
- •60.Решение задачи коши для обыкновенного диф. Ур. Методом эйлера
- •61. Решение нелинейных алгебраических уравнений методом Ньютона.
- •62.Решение системы линейных алгебраических уравнений методом простой итерации.
- •Второй способ особенно прост в случае, когда система однородна (f1(t)≡0 и f2(t)≡0), так как в этом случае правые части уравнений (3), (4) и (5) равны нулю.
- •64.Системы линейных алгебраических уравнений.
- •Скалярні і векторні поля та їх характеристики Скалярні поля
- •Векторні поля
- •Формула Остроградського-Гаусса
- •Формула Стокса
- •68. Технологический процесс создания рабочей программы для эвм с применением транслятора (текстовый редактор, транслятор, компоновщик).
- •69. Трансляторы и интерпретаторы. Назначение и отличие.
- •70. Тригонометрический ряд фурье
- •71.Формула Тейлора функции одной действительной переменной и ее остаточный член в разных формах. Ряд тейлора. Разложение в ряд Маклорена основных элементарных функций.
- •72.Условия почленного дифференцирования и интегрирования. Степенные ряды.
- •73. Численное интегрирование. Формула трапеций.
- •74. Числовые посл-ти.
- •Предел посл-ти.
- •Арифм. Операции над посл-тями.
- •75.Числовые ряды, признаки их сходимости. Абсолютно и условно сходящиеся ряды, их свойства.
Сравнение функций.
Определение (символ О). Если для функций f(x), g(x) существуют постоянные c>0, >0, такие, что |f(x)| c |g(x)| при |x-a|<, x a, то говорят, что f является ограниченной по сравнению с функцией g в окрестности точки a и пишут, что f(x) = O(g(x)) при x a.
Данное определение переносится и на случай, когда x, x.
Пример 12.
Так как |1/x2| |1/x| при |x| 1, то 1/x2 = O(1/x) при x ;
1/x = O(1/x2) при x 0 так как |1/x| 1/x2 при |x| 1.
Запись f=O(1) при x a означает, что функция f(x) ограничена в некоторой окрестности точки a.
Определение (функции одного порядка). Если f=O(g) и g=O(f) при x a f и g — одного порядка при x a.
Пример 13. Функции f(x) = x(2+sin 1/x) g(x) = x x 0 являются бесконечно малыми одного порядка при x a , так как
f/g = (x(2+sin 1/x))/x = 2+sin 1/x = |2+sin 1/x| 3 f=O(g), g/f = 1/|2+sin 1/x| 1 g=O(f).
Определение (эквивалентные функции). Функции f(x) и g(x) называются эквивалентными при x a, если (x): f(x) = (x)g(x), где limx a (x) = 1.
Иначе говоря функции эквивалентны при x a, если предел их отношения при x a равен единице. Справедливы следующие соотношения, их еще называют асимптотическими равенствами:
sin x ~ x, x 0 |
(1) |
tg x ~ x, x 0, arcsin x ~ x, x 0, arctg x~ x, x 0
ex-1~ x, x 0
ln (1+x)~ x, x 0 |
(2) |
m-1~ mx, x 0 |
(3) |
Следующая теорема удобна для применения на практике при вычислении пределов.
Теорема . Пусть f(x)~ f1(x), g(x)~ g1(x) при x a Тогда если существует предел
limx af1(x)/g1(x),
то существует
limx af(x)/g(x),
причем
limx af1(x)/g1(x) = limx af(x)/g(x).
Определение (символ о). Говорят, что функция f является бесконечно малой по сравнению с g при x a, и пишут f=o(g), x a, если выполнено соотношение f(x) = (x)g(x), где limx a (x) = 0. Иначе говоря limx a f(x)/g(x) = limx a (x) = 0.
Пример 15.
x2 = o(x) при x 0, так как limx 0x2/x = limx 0x = 0;
1/x2 = o(1/x) при x так как limx x/x2 = limx 1/x = 0
Справедлива теорема.
Теорема. Для того, чтобы функции f(x), g(x) были эквивалентными при x a необходимо и достаточно, чтобы при x a выполнялось хотя бы одно из условий
f(x) = g(x)+o(g(x))
или
g(x) = f(x)+o(f(x)).
Заметим, что функции g(x) в первом условии и соответственно функция f(x) во втором называются главной частью функции f(x) (g(x)).
Определение. Если f=o(g) при x a и g(x) - бесконечно малая при x a, то говорят, что f(x) - бесконечно малая более высокого по сравнению с g(x) порядка при x a.
Пример 18. x2- бесконечно малая более высокого порядка по сравнению с x при x 0
Определение. Если f(x), g(x) -бесконечно большие при x a и f=o(g) при x a, то говорят, что g - бесконечно большая более высокого порядка по сравнению с f .
Пример 19. Функции f=x3+x2+2x+1, g=x4+3x2 -бесконечно большие при x, и так как limx f/g=0, то g — бесконечно большая более высокого порядка по сравнению с f
Отметим некоторые правила обращения с символами o(), O().
Предложение.
o(f)+o(f) = o(f)
o(f) тем более есть O(f)
O(f)+O(f) = O(f)
Если g 0, то o(f)/g=o(f/g), O(f)/g=O(f/g).