
- •2. Алгоритм и его свойства. Методы записи алгоритмов.
- •3.Булева алгебра и вопросы, связанные с ее применением
- •4.Векторы в трехмерном пространстве. Понятия правого ортонормированного базиса. Скалярное, векторное и смешанное произведения.
- •5.Виды уравнений плоскостей и прямых в пространстве. Условия их параллельности и перпендикулярности.
- •6.Группы, кольца, поля (определения и примеры)
- •7. Дискретные св. Числовые х-ки и их св-ва.
- •8. Ду, допускающие понижение порядка.
- •9. Ду не разрешенные относ-но производной. Ур-я Лагранжа и Клеро.
- •11. Дифференцируемось функций многих действительных переменных. Экстремумы функций многих действительных переменных.
- •12. Диалоговый и пакетный режим работы эвм с пользователем. Принципы функционирования мультипрограммных ос.
- •13. Элементарные функции комплексной переменной и их свойства.
- •14. Общие понятия исчисления.
- •Двійкова система числення.
- •15. Застосування теорії операційного числення до розв’язання диференціальних рівнянь.
- •16. Зв’язані динамічні структури даних: черги і стеки.
- •17. Интегрирование фкп. Интеграл по замкнутому контуру от аналитической функции. Интегральная формула Коши и следствия из нее.
- •18. Интерполирование функций. Интерпол. Полином лагранжа
- •19.Интуитивное и техническое понятие информации. Понятие бита и байта. Модель оперативной памяти эвм.
- •20. Квадратичные формы: ранг, канонический и нормальный виды, сигнатура. Способы сведения к каноническому виду.
- •21. Классификация изолированных особых точек фкп. Интегральный вычет.
- •22. Классическое определение вероятности. Геометрическая вероятность. Формула полной вероятности.Формула Байеса.
- •Событие наз. Простым (элементарным), если оно состоит только лишь из одного элементарного исхода, и составным – если k исходов.
- •Классическое определение вероятности Колмагорова
- •Геометрическая вероятность
- •Конструкторы и деструкторы особые члены класса, служащие для инициализации и уничтожения объекта.
- •24. Кратные интегралы (двойные, тройные): определение, основные свойства. Применение.
- •25. Криволинейные и поверхностные интегралы. Определение. Основные свойства. Применение.
- •26. Линии 2-го порядка
- •27. Лінійні диференціальні рівняння першого порядку та методи їх розв’язування.
- •29. Неодн. Лин. Ду n-го порядка с пост. Коэф-тами, спец. Прав. Часть.
- •Метод неопр коэф-тов.
- •31.Линейные операторы. Собственные векторы и собственные значения линейных операторов.
- •32.Матрицы. Операци над матрицами. Определители, миноры, алгебраические дополнения.
- •33.Методы комбинаторного анализа и их применение для реш-я задач.
- •1)Элементарные рекуррентные соотн-я.
- •3)Метод включения и исключения.
- •34. Метрические пространства
- •35.Многочлены над полями q,r,с. Основная tr алгебры.
- •36. Непрерывность функции одной переменной. Свойства непрерывных функций. Понятие точек разрыва и их классификация.
- •Точки разрыва
- •Свойства функций, непрерывных в точке
- •Глобальные свойства непрерывных функций
- •37.Обратные матрицы. Методы нахождения обратной матрицы.
- •38. Определенный инт-л и его св-ва
- •39. Определения теории графов. Задачи оптимизации на графах.
- •42.Основные типы ду 1-го порядка
- •Уравнения с разделенными и разделяющимися пер-ми.
- •Уравнение Бернулли
- •43. Основные типы диалогов эвм-человек.
- •44. Основные типы уравнений матфизики.
- •Теплопроводность стержня
- •Теплопроводность пластины
- •Стационарный случай
- •Гельмгольца
- •45. Основные логические блоки эвм и их назначения.
- •46. Поверхности 2-го порядка.
- •47.Повторение испытании. Формула Бернулли. Формула Пуассона. Локальная и интегральная теоремы Муавра и Лапласа.
- •48. Поле комплексных чисел. Различные формы записи комплексных чисел. Формула муавра.
- •50. Понятие математического (программного) обеспечения эвм. Инструментальное математическое обеспечение. Примеры.
- •51. Поняття обчислювальної складності алгоритму. Параметри аналізу обчислювальної складності. Поняття обчислювальної складності
- •52. Понятие ос, ее основные компоненты. Понятие ресурса эвм.
- •53. Понятие первообр-й ф-и, неопр. Инт-ла и их св-ва.
- •1)Метод замены пер-й
- •2)Метод интегр-я по частям
- •Простое наследование
- •Множественное наследование
- •55. Понятие функции комплексной переменной. Предел, непрерывность, производная функции комплексной переменной. Условия Коши-Римана дифференцируемости функции.
- •Сравнение функций.
- •57.Прямая на плоскости. Уравнение прямой на плоскости в прямоугольной сис. Координат.
- •58.Ранг матрицы, способы его вычисления. Теорема Кронекера – Капелли.
- •60.Решение задачи коши для обыкновенного диф. Ур. Методом эйлера
- •61. Решение нелинейных алгебраических уравнений методом Ньютона.
- •62.Решение системы линейных алгебраических уравнений методом простой итерации.
- •Второй способ особенно прост в случае, когда система однородна (f1(t)≡0 и f2(t)≡0), так как в этом случае правые части уравнений (3), (4) и (5) равны нулю.
- •64.Системы линейных алгебраических уравнений.
- •Скалярні і векторні поля та їх характеристики Скалярні поля
- •Векторні поля
- •Формула Остроградського-Гаусса
- •Формула Стокса
- •68. Технологический процесс создания рабочей программы для эвм с применением транслятора (текстовый редактор, транслятор, компоновщик).
- •69. Трансляторы и интерпретаторы. Назначение и отличие.
- •70. Тригонометрический ряд фурье
- •71.Формула Тейлора функции одной действительной переменной и ее остаточный член в разных формах. Ряд тейлора. Разложение в ряд Маклорена основных элементарных функций.
- •72.Условия почленного дифференцирования и интегрирования. Степенные ряды.
- •73. Численное интегрирование. Формула трапеций.
- •74. Числовые посл-ти.
- •Предел посл-ти.
- •Арифм. Операции над посл-тями.
- •75.Числовые ряды, признаки их сходимости. Абсолютно и условно сходящиеся ряды, их свойства.
Точки разрыва
Пример 22. Исследовать на непрерывность
f(x) = |
|
(рис. 17)
По графику видно, что функция не является непрерывной в точке x = 0. Существуют односторонние пределы функции справа и слева в точке x = 0, которые не равны limx -0f(x) = -1 и limx +0f(x) = 1. То есть определение непрерывной функции в точке не выполнено и точка x = 0 - точка разрыва функции.
Определение . Точка a называется точкой разрыва функции f(x), если эта функция не является непрерывной в данной точке.
Записав отрицание определения непрерывной функции, получим определение точки разрыва:
Определение (точки разрыва). a - точка разрыва f, если
>0 ()>0 x E : |x-a|< |f(x)-f(a)|>.
Различают точки разрыва первого рода (когда существуют конечные односторонние пределы функции слева и справа при x a, не равные друг другу) и второго рода (когда хотя бы один из односторонних пределов слева или справа равен бесконечности или не существует). Так в примере на рис. 15 x = 0 является точкой разрыва первого рода. К точкам разрыва первого рода относятся точки устранимого разрыва, когда предел функции при x a существует, но в точке a функция либо неопределена, либо f(a) lim x af(x).
Замечание. В точке устранимого разрыва функцию f(x) можно доопределить так, чтобы она стала непрерывной, положив f(a) = limx af(x).
Пример 23.
f(x) = |
|
Так как limx asin x/x = 1, то x = 0 является точкой устранимого разрыва.
Пример 24. Функция Дирихле разрывна во всех точках и все точки разрыва второго рода, так как на любом интервале есть рациональные и иррациональные числа.
Свойства функций, непрерывных в точке
Отметим основные локальные свойства непрерывных функций.
Теорема (локальные свойства непрерывных функций).
Пусть функция f:E R непрерывна в точке a. Тогда f(x) ограничена в некоторой окрестности точки a.
Пусть функция f(x) непрерывна в точке a и f(a) 0, то в некоторой окрестности точки a все значения функции положительны или отрицательны вместе с f(a).
Если f(x), g(x) - непрерывны в точке a, то функции: f(x)+g(x), f(x)g(x), f(x)/g(x) (при g(a) 0 ) непрерывны в точке a.
Если функция g(x):Y R непрерывна в точке b Y, а функция f:E Y непрерывна в точке a, f(a) = b, тогда композиция g° f также непрерывна в точке a.
Данная теорема следует из определения непрерывности функции и соответствующих свойств предела функции.
Глобальные свойства непрерывных функций
Определение (непрерывность функции на множестве). Функция называется непрерывной на множестве, если она непрерывна в каждой точке множества.
То, что f(x) непрерывна на множестве X обозначается следующим образом: f(x) CX.
Определение. Функция называется непрерывной на отрезке [a,b] , если она непрерывна в каждой внутренней точке этого отрезка и непрерывна справа в точке a и непрерывна слева в точке b.
То, что f(x) непрерывна на отрезке [a,b] обозначается следующим образом: f(x) C[a,b].
Перечислим основные глобальные свойства непрерывных функций.
Теорема (глобальные свойства непрерывных функций).
(Первая теорема Вейерштрасса) Если функция f(x) C[a,b], то она ограничена на [a,b] (см. рис. 18).
(Вторая теорема Вейерштрасса) Если f(x) C[a,b], то она достигает на [a,b] своих точных верхней и нижней граней (рис. 19)
(Теорема Коши) Если f(x) C[a,b] и f(a)f(b)<0, то существует c [a,b] f(c) = 0 (см.рис. 20).
З
амечание.
Функции, не являющиеся непрерывными на данном отрезке, могут принимать точную верхнюю и точную нижнюю грани, например функция Дирихле.
Е
сли в условиях теоремы отрезок заменить на интервал, то теорема будет неверна, например, функция 1/x на интервале (0,1) непрерывна, но не является ограниченной; функция y = x на интервале (0,1) не достигает своих точных граней.