- •2. Алгоритм и его свойства. Методы записи алгоритмов.
- •3.Булева алгебра и вопросы, связанные с ее применением
- •4.Векторы в трехмерном пространстве. Понятия правого ортонормированного базиса. Скалярное, векторное и смешанное произведения.
- •5.Виды уравнений плоскостей и прямых в пространстве. Условия их параллельности и перпендикулярности.
- •6.Группы, кольца, поля (определения и примеры)
- •7. Дискретные св. Числовые х-ки и их св-ва.
- •8. Ду, допускающие понижение порядка.
- •9. Ду не разрешенные относ-но производной. Ур-я Лагранжа и Клеро.
- •11. Дифференцируемось функций многих действительных переменных. Экстремумы функций многих действительных переменных.
- •12. Диалоговый и пакетный режим работы эвм с пользователем. Принципы функционирования мультипрограммных ос.
- •13. Элементарные функции комплексной переменной и их свойства.
- •14. Общие понятия исчисления.
- •Двійкова система числення.
- •15. Застосування теорії операційного числення до розв’язання диференціальних рівнянь.
- •16. Зв’язані динамічні структури даних: черги і стеки.
- •17. Интегрирование фкп. Интеграл по замкнутому контуру от аналитической функции. Интегральная формула Коши и следствия из нее.
- •18. Интерполирование функций. Интерпол. Полином лагранжа
- •19.Интуитивное и техническое понятие информации. Понятие бита и байта. Модель оперативной памяти эвм.
- •20. Квадратичные формы: ранг, канонический и нормальный виды, сигнатура. Способы сведения к каноническому виду.
- •21. Классификация изолированных особых точек фкп. Интегральный вычет.
- •22. Классическое определение вероятности. Геометрическая вероятность. Формула полной вероятности.Формула Байеса.
- •Событие наз. Простым (элементарным), если оно состоит только лишь из одного элементарного исхода, и составным – если k исходов.
- •Классическое определение вероятности Колмагорова
- •Геометрическая вероятность
- •Конструкторы и деструкторы особые члены класса, служащие для инициализации и уничтожения объекта.
- •24. Кратные интегралы (двойные, тройные): определение, основные свойства. Применение.
- •25. Криволинейные и поверхностные интегралы. Определение. Основные свойства. Применение.
- •26. Линии 2-го порядка
- •27. Лінійні диференціальні рівняння першого порядку та методи їх розв’язування.
- •29. Неодн. Лин. Ду n-го порядка с пост. Коэф-тами, спец. Прав. Часть.
- •Метод неопр коэф-тов.
- •31.Линейные операторы. Собственные векторы и собственные значения линейных операторов.
- •32.Матрицы. Операци над матрицами. Определители, миноры, алгебраические дополнения.
- •33.Методы комбинаторного анализа и их применение для реш-я задач.
- •1)Элементарные рекуррентные соотн-я.
- •3)Метод включения и исключения.
- •34. Метрические пространства
- •35.Многочлены над полями q,r,с. Основная tr алгебры.
- •36. Непрерывность функции одной переменной. Свойства непрерывных функций. Понятие точек разрыва и их классификация.
- •Точки разрыва
- •Свойства функций, непрерывных в точке
- •Глобальные свойства непрерывных функций
- •37.Обратные матрицы. Методы нахождения обратной матрицы.
- •38. Определенный инт-л и его св-ва
- •39. Определения теории графов. Задачи оптимизации на графах.
- •42.Основные типы ду 1-го порядка
- •Уравнения с разделенными и разделяющимися пер-ми.
- •Уравнение Бернулли
- •43. Основные типы диалогов эвм-человек.
- •44. Основные типы уравнений матфизики.
- •Теплопроводность стержня
- •Теплопроводность пластины
- •Стационарный случай
- •Гельмгольца
- •45. Основные логические блоки эвм и их назначения.
- •46. Поверхности 2-го порядка.
- •47.Повторение испытании. Формула Бернулли. Формула Пуассона. Локальная и интегральная теоремы Муавра и Лапласа.
- •48. Поле комплексных чисел. Различные формы записи комплексных чисел. Формула муавра.
- •50. Понятие математического (программного) обеспечения эвм. Инструментальное математическое обеспечение. Примеры.
- •51. Поняття обчислювальної складності алгоритму. Параметри аналізу обчислювальної складності. Поняття обчислювальної складності
- •52. Понятие ос, ее основные компоненты. Понятие ресурса эвм.
- •53. Понятие первообр-й ф-и, неопр. Инт-ла и их св-ва.
- •1)Метод замены пер-й
- •2)Метод интегр-я по частям
- •Простое наследование
- •Множественное наследование
- •55. Понятие функции комплексной переменной. Предел, непрерывность, производная функции комплексной переменной. Условия Коши-Римана дифференцируемости функции.
- •Сравнение функций.
- •57.Прямая на плоскости. Уравнение прямой на плоскости в прямоугольной сис. Координат.
- •58.Ранг матрицы, способы его вычисления. Теорема Кронекера – Капелли.
- •60.Решение задачи коши для обыкновенного диф. Ур. Методом эйлера
- •61. Решение нелинейных алгебраических уравнений методом Ньютона.
- •62.Решение системы линейных алгебраических уравнений методом простой итерации.
- •Второй способ особенно прост в случае, когда система однородна (f1(t)≡0 и f2(t)≡0), так как в этом случае правые части уравнений (3), (4) и (5) равны нулю.
- •64.Системы линейных алгебраических уравнений.
- •Скалярні і векторні поля та їх характеристики Скалярні поля
- •Векторні поля
- •Формула Остроградського-Гаусса
- •Формула Стокса
- •68. Технологический процесс создания рабочей программы для эвм с применением транслятора (текстовый редактор, транслятор, компоновщик).
- •69. Трансляторы и интерпретаторы. Назначение и отличие.
- •70. Тригонометрический ряд фурье
- •71.Формула Тейлора функции одной действительной переменной и ее остаточный член в разных формах. Ряд тейлора. Разложение в ряд Маклорена основных элементарных функций.
- •72.Условия почленного дифференцирования и интегрирования. Степенные ряды.
- •73. Численное интегрирование. Формула трапеций.
- •74. Числовые посл-ти.
- •Предел посл-ти.
- •Арифм. Операции над посл-тями.
- •75.Числовые ряды, признаки их сходимости. Абсолютно и условно сходящиеся ряды, их свойства.
27. Лінійні диференціальні рівняння першого порядку та методи їх розв’язування.
Лінійним ДР 1-го порядку називається рівняння виду:
y'+p(x)y=f(x) (1);
де f(x), f(x) – задані і непервні на деякому проміжку функції.
Термін «лінійне рівняння» пояснюється тим, невідома функція (y) і її похідна y' входять до рівняння в 1 степені, тобто лінійно.
Є кілька методів інтегрування рівняння (1). Один з них (метод Бернуллі) полягає в тому, що розвязок цього рівняння шукають у вигляді добутку:
y=v*u; де u=u(x), v=v(x) – невідомі функції (х), причому одна з цих цункцій довільна (але не рівна тотожно нулю).
Знаходячи похідну y'=u'v+v'u і підставляючи значення (y) та y' в рівняння (1), дістанемо:
u'v+u(v'+p(x)v)=f(x).
Користуючись довільністю у виборі функції v(x), доберемо її так, щоб
v'+p(x)v=0 (2) тоді u'v=f(x) (3)
Розвяжемо ці рівняння. Відокремлюючи в рівнянні (2) змінні та інтегруючи, знайдемо його загальний розвязок: dv/dx =-p(x)v; dv/v=-p(x)dx;
Візьмемо за v який-небудь часний ровзвязок рівняння (2), наприклад :
Знаючи функцію v, з рівняння (3) знаходимо функцію (u):
Підставляючи в y=u*v, знаходимо загальний розвязок рівняння.
28. Линейные неоднородные дифференциальные уравнения 2го порядка с постоянными коэффициентами. Метод вариации произвольных постоянных.
Рассмотрим
дифференциальное уравнение вида:
,
p,q
R (1)
Для нахождения общего интеграла уравнения (1) достаточно найти частное решение этого неоднородного уравнения и сложить его с общим решением соответствующего однородного уравнения.
Поскольку общий интеграл однородного уравнения известен, можем с помощью квадратур получить частное решение неоднородного уравнения, пользуясь методом вариации произвольных постоянных.
Данный метод
покажем в частном случае, когда уравнение
(1) имеет вид:
(2)
Общий интеграл
однородного уравнения имеет вид:
О
бщий
интеграл неоднородного уравнения:
u
Ч
астное
решение неоднородного уравнения будем
искать:
(3)
y1 y2
В решении (3) v1
и v2
есть функции от переменной x.
Имея не одну, а две искомые функции, мы
можем кроме исходного уравнения подчинить
их ещё одному условию.
(4)
То мы имеем систему двух уравнений для отыскания функции v1, v2. Продифференцируем соотношение (3):
Учтём (4):
(*)
Учитывая тот факт,
что y1
и y2
есть решения однородного уравнения
(2), т.е. соотношение
[ ]=0, будем иметь
условие:
Имеем систему для
отыскания функции v1,
v2:
Запишем первообразную
функций в виде интегралов с переменным
верхним пределом и обозначим переменную
через .
Тогда:
,
где x0
– некоторое фиксированное число.
Подставим найденное значение f в решение (3), будем иметь:
.
Решение
можно представить в виде, если ввести
множители под знак интегрирования, то
получим:
.
Окончательное решение исходного неоднородного уравнения будет иметь вид:
(**)
Соотношением (**) определено общее решение исходного неоднородного уравнения (2), не содержащего первую производную.
При решении линейных неоднородных уравнений с постоянными коэффициентами во многих случаях удаётся без труда подобрать частное решение и тем самым свести решение задачи к отысканию решения соответствующего его однородного уравнения.
