
- •2. Алгоритм и его свойства. Методы записи алгоритмов.
- •3.Булева алгебра и вопросы, связанные с ее применением
- •4.Векторы в трехмерном пространстве. Понятия правого ортонормированного базиса. Скалярное, векторное и смешанное произведения.
- •5.Виды уравнений плоскостей и прямых в пространстве. Условия их параллельности и перпендикулярности.
- •6.Группы, кольца, поля (определения и примеры)
- •7. Дискретные св. Числовые х-ки и их св-ва.
- •8. Ду, допускающие понижение порядка.
- •9. Ду не разрешенные относ-но производной. Ур-я Лагранжа и Клеро.
- •11. Дифференцируемось функций многих действительных переменных. Экстремумы функций многих действительных переменных.
- •12. Диалоговый и пакетный режим работы эвм с пользователем. Принципы функционирования мультипрограммных ос.
- •13. Элементарные функции комплексной переменной и их свойства.
- •14. Общие понятия исчисления.
- •Двійкова система числення.
- •15. Застосування теорії операційного числення до розв’язання диференціальних рівнянь.
- •16. Зв’язані динамічні структури даних: черги і стеки.
- •17. Интегрирование фкп. Интеграл по замкнутому контуру от аналитической функции. Интегральная формула Коши и следствия из нее.
- •18. Интерполирование функций. Интерпол. Полином лагранжа
- •19.Интуитивное и техническое понятие информации. Понятие бита и байта. Модель оперативной памяти эвм.
- •20. Квадратичные формы: ранг, канонический и нормальный виды, сигнатура. Способы сведения к каноническому виду.
- •21. Классификация изолированных особых точек фкп. Интегральный вычет.
- •22. Классическое определение вероятности. Геометрическая вероятность. Формула полной вероятности.Формула Байеса.
- •Событие наз. Простым (элементарным), если оно состоит только лишь из одного элементарного исхода, и составным – если k исходов.
- •Классическое определение вероятности Колмагорова
- •Геометрическая вероятность
- •Конструкторы и деструкторы особые члены класса, служащие для инициализации и уничтожения объекта.
- •24. Кратные интегралы (двойные, тройные): определение, основные свойства. Применение.
- •25. Криволинейные и поверхностные интегралы. Определение. Основные свойства. Применение.
- •26. Линии 2-го порядка
- •27. Лінійні диференціальні рівняння першого порядку та методи їх розв’язування.
- •29. Неодн. Лин. Ду n-го порядка с пост. Коэф-тами, спец. Прав. Часть.
- •Метод неопр коэф-тов.
- •31.Линейные операторы. Собственные векторы и собственные значения линейных операторов.
- •32.Матрицы. Операци над матрицами. Определители, миноры, алгебраические дополнения.
- •33.Методы комбинаторного анализа и их применение для реш-я задач.
- •1)Элементарные рекуррентные соотн-я.
- •3)Метод включения и исключения.
- •34. Метрические пространства
- •35.Многочлены над полями q,r,с. Основная tr алгебры.
- •36. Непрерывность функции одной переменной. Свойства непрерывных функций. Понятие точек разрыва и их классификация.
- •Точки разрыва
- •Свойства функций, непрерывных в точке
- •Глобальные свойства непрерывных функций
- •37.Обратные матрицы. Методы нахождения обратной матрицы.
- •38. Определенный инт-л и его св-ва
- •39. Определения теории графов. Задачи оптимизации на графах.
- •42.Основные типы ду 1-го порядка
- •Уравнения с разделенными и разделяющимися пер-ми.
- •Уравнение Бернулли
- •43. Основные типы диалогов эвм-человек.
- •44. Основные типы уравнений матфизики.
- •Теплопроводность стержня
- •Теплопроводность пластины
- •Стационарный случай
- •Гельмгольца
- •45. Основные логические блоки эвм и их назначения.
- •46. Поверхности 2-го порядка.
- •47.Повторение испытании. Формула Бернулли. Формула Пуассона. Локальная и интегральная теоремы Муавра и Лапласа.
- •48. Поле комплексных чисел. Различные формы записи комплексных чисел. Формула муавра.
- •50. Понятие математического (программного) обеспечения эвм. Инструментальное математическое обеспечение. Примеры.
- •51. Поняття обчислювальної складності алгоритму. Параметри аналізу обчислювальної складності. Поняття обчислювальної складності
- •52. Понятие ос, ее основные компоненты. Понятие ресурса эвм.
- •53. Понятие первообр-й ф-и, неопр. Инт-ла и их св-ва.
- •1)Метод замены пер-й
- •2)Метод интегр-я по частям
- •Простое наследование
- •Множественное наследование
- •55. Понятие функции комплексной переменной. Предел, непрерывность, производная функции комплексной переменной. Условия Коши-Римана дифференцируемости функции.
- •Сравнение функций.
- •57.Прямая на плоскости. Уравнение прямой на плоскости в прямоугольной сис. Координат.
- •58.Ранг матрицы, способы его вычисления. Теорема Кронекера – Капелли.
- •60.Решение задачи коши для обыкновенного диф. Ур. Методом эйлера
- •61. Решение нелинейных алгебраических уравнений методом Ньютона.
- •62.Решение системы линейных алгебраических уравнений методом простой итерации.
- •Второй способ особенно прост в случае, когда система однородна (f1(t)≡0 и f2(t)≡0), так как в этом случае правые части уравнений (3), (4) и (5) равны нулю.
- •64.Системы линейных алгебраических уравнений.
- •Скалярні і векторні поля та їх характеристики Скалярні поля
- •Векторні поля
- •Формула Остроградського-Гаусса
- •Формула Стокса
- •68. Технологический процесс создания рабочей программы для эвм с применением транслятора (текстовый редактор, транслятор, компоновщик).
- •69. Трансляторы и интерпретаторы. Назначение и отличие.
- •70. Тригонометрический ряд фурье
- •71.Формула Тейлора функции одной действительной переменной и ее остаточный член в разных формах. Ряд тейлора. Разложение в ряд Маклорена основных элементарных функций.
- •72.Условия почленного дифференцирования и интегрирования. Степенные ряды.
- •73. Численное интегрирование. Формула трапеций.
- •74. Числовые посл-ти.
- •Предел посл-ти.
- •Арифм. Операции над посл-тями.
- •75.Числовые ряды, признаки их сходимости. Абсолютно и условно сходящиеся ряды, их свойства.
Событие наз. Простым (элементарным), если оно состоит только лишь из одного элементарного исхода, и составным – если k исходов.
Несколько событий
образуют
полную группу,
если в результате стохастического (не
можем предугадать результат) эксперимента
произойдет хотя бы одно из них, т.е. их
сумма есть достоверное событие.
Два события наз. несовместными, если в результате опыта появление одного из событии исключает появление другого, т.е. эти события не могут произойти одновременно.
Несколько событий
наз.
равновозможными,
если
.
Условной вероятностью
P(A\B)
события А при наличии события В наз.
вероятность события А, вычисленного
при условии, что событие В произошло:
.
Классическое определение вероятности Колмагорова
Предположим,
что мы имеем дело с пространством
элементарных
исходов, состоящим из конечного числа
элементов:
Более того, предположим, что из каких-
либо соображений мы можем считать
элементарные исходы равновозможными.
Тогда вероятность любого из них
принимается равной 1/
.
Эти соображения чаще всего не имеют отношения к математической модели и основаны на какой-либо симметрии в эксперименте (симметричная монета, правильная кость). Либо мы можем заранее считать исходы экс-та равновозможными, но тогда рано или поздно возникнет вопрос о соответствии такой мат. модели реальному эксперименту.
Если событие
состоит
из
элементарных исходов, то вероятность
этого события равняется
Определение.
Говорят, что
эксперимент удовлетворяет классическому
определению вероятности
(или классической вероятностной схеме),
если пространство элементарных исходов
состоит из конечного числа
равновозможных исходов.
В этом случае вероятность события А равна отношению числа исходов, благоприятствующих событию А, к общему числу исходов.
Геометрическая вероятность
Классическое определение вероятности пригодно только для экспериментов с ограниченным числом равномерных элементарных событий.
a
Р
ассмотрим
какую-нибудь непрерывную квадрируемую
область
в
,
(на прямой, на плоскости, в пространстве).
Предположим, что «мера»
(длина, площадь, объём, соответственно)
конечна. Пусть случайный эксперимент
состоит в том, что мы наудачу бросаем в
эту область точку
.
Термин «наудачу»
здесь означает, что вероятность попадания
в
часть
не
зависит от формы или расположения A
внутри
,
а зависит лишь от «меры» области.
Определение. Эксперимент удовлетворяет условиям «геометрического определения вероятности», если его исходы можно изобразить точками некоторой области в так, что вероятность попадания точки в не зависит от формы или расположения A внутри , а зависит лишь от «меры» области A ( и следовательно, пропорциональна этой мере):
,
где
обозначает
меру области A.
«Мерой» мы пока будем называть длину, площадь, объём.
Если для точки, брошенной в область , выполнены условия геометрического определения вероятности, то говорят, что точка равномерно распределена в области .
Замечание. Если даже эксперимент удовлетворяет геометрическому определению вероятности, далеко не для всех множеств вероятность может быть вычислена как отношение меры А к мере . Причиной этого является существование так называемых «неизмеримых» множеств, то есть множеств, мера которых не существует. А если для всех подмножеств мы можем определить их вероятности, следует сузить класс множеств, называемых «событиями», оставив в этом классе только те множества, для которых мы можем определить вероятность.
Формула полной вероятности.
Пусть событие А может наступить только при условии появления одного из несовместных событий Hi (гипотез), которые образуют полную группу. Тогда вероятность любого события А может быть вычислена по формуле:
.
События H1, H2,…, образующие полную группу событий, часто наз. гипотезами. При подходящем выборе гипотез для произвольного события А могут быть сравнительно просто вычислены P(A\Hi) (вероятность событию А произойти при выполнении Hi).
Формула Байеса.
Пусть H1, H2,…- полная группа событий и А- некоторое событие положительной вероятности. Тогда условная вероятность того, что имело место событие Hk, если в результате эксперимента наблюдалось событие А, может быть вычислена по формуле:
.
Формулы Байеса позволяют переоценивать вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А.
23. Конструктори і деструктори класу в мові програмування C++. Призначення і основні правила використання. Приведіть приклади.