
- •Понятие «фермент». Свойства ферментов. Отличие ферментов от неорганических катализаторов.
- •Какие вещества называются ферментами? Их химическая природа и строение?
- •Чем обусловлено их разнообразие? Охарактеризуйте специфичность действия ферментов. Примеры.
- •4. Химическая природа ферментов. Строение ферментов. Активные центры ферментов. Множественные формы ферментов.
- •5. Строение ферментов. Общая характеристика кофакторов, их связь с витаминами; примеры.
- •6. Структура ферментов. Понятие простых и сложных ферментов. Приведите примеры. Апофермент, его структура и роль. Кофермент, его структура и роль.
- •7. Что такое олигоферменты?
- •8. Простые и сложные ферменты. Что такое мультиферментные комплексы? Виды мультиферментных комплексов. Примеры.
- •9. Современные представления о мех-ме действия ферментов и регуляции их активности, привести примеры.
- •10. Современные представления о кинетике ферментативных реакций и факторы, которые на нее влияют.
- •11. Назовите факторы, которые влияют на скорость ферментативной реакции. Охарактеризуйте влияние этих факторов на скорость ферментативной реакции.
- •12. Регуляция активности ферментов; пути ее активации и инактивации. Влияние ионизирующего излучения и экологических факторов на ферменты.
- •13. Механизмы регуляции активности ферментов.
- •1. Доступность субстрата или кофермента
- •2. Компартментализация
- •3. Генетическая регуляция
- •4. Ограниченный (частичный) протеолиз проферментов
- •5. Аллостерическая регуляция
- •6. Белок-белковое взаимодействие
- •7. Ковалентная (химическая) модификация
- •14. Уровни структурной организации ферментов. Особенности функционирования ферментов биомембран.
- •15. Сущность биологического катализа. Роль белков в биологическом катализе.
- •16. Основы биокатализа. Общие свойства ферментов.
- •17. Международная классификация и номенклатура ферментов. Трансферазы, роль переноса химических групп, привести примеры.
- •18. Международная классификация и номенклатура ферментов. Оксидоредуктазы, структура, роль.
- •19. Международная классификация и номенклатура ферментов. Гидролазы, их роль в обмене веществ, привести примеры. Определение активности амилазы в слюне, моче, диагностическое значение.
- •20. Понятие «фермент». Классификация и номенклатура ферментов. Охарактеризуйте класс изомеразы, лиазы и лигазы. Примеры.
- •21. Классификация ферментов по типу катализируемой химической реакции (6 классов ферментов). Охарактеризуйте эти классы, приведите примеры.
- •22. Что такое «ингибиторы» и «активаторы» ферментов. Виды ингибирования.
- •23. Применение ферментов в медицине. Понятие об энзимопатиях. Примеры.
- •24. Понятие метаболизма. Стадии метаболизма. Цикл трикарбоновых кислот (цикл Кребса), его роль в обмене углеводов, липидов, аминокислот.
- •II раздел
- •21. Современные представления про уреогенез. Нормальное содержание мочевины в крови и моче, и ее изменение при острой почечной недостаточности. Синтез мочевины (уреогенез) Синтез мочевины
- •Реакция синтеза карбамоилфосфата и орнитиновый цикл Норма мочевины для взрослых (в крови)
- •Норма у человека мочевины в моче
- •22. Орнитиновый цикл синтеза мочевины, его роль и связи с другими метаболическими путями. Цикл мочевины:
- •24. Специфический обмен циклических аминокислот, характеристика путей и образующихся веществ. Обмен циклических аминокислот фенилаланина и тирозина
- •32. Обмен нуклеотидов. Превращение пиримидиновых нуклеотидов в конечные продукты.
- •33. Структура и роль нуклеиновых кислот (днк и рнк).
- •34. Биосинтез рнк, регуляция процессов и возможные нарушения. Влияние ионизирующего излучения и экологических факторов на метаболизм нуклеиновых кислот.
- •35. Биосинтез днк, регуляция процесса и возможные нарушения.
- •36. Белоксинтезирующая система организма.
- •37. Биосинтез белка.
- •38. Ингибиторы матричных синтезов.
- •39. Взаимосвязь обмена белков и нуклеиновых кислот.
- •40. Понятие о мутациях. Причины, виды. Механизмы контроля и исправления ошибок в ходе матричных синтезов
- •41. Классификация углеводов. Характеристика моносахаридов, их строение, роль.
- •42. Классификация углеводов. Общая характеристика олигосахаридов, их структура и роль.
- •43. Классификация углеводов. Химия гомо- и гетерополисахаридов, их биологическая роль.
- •44. Обмен углеводов. Переваривание и всасывание углеводов и их возможные нарушения.
- •45. Особенности обмена галактозы и фруктозы. Возможные нарушения.
- •46. Гликогенная функция печени; биосинтез и мобилизация гликогена; процесс регуляции и возможные нарушения. Глюкоза крови.
- •47. Химизм синтеза и распада гликогена в тканях. Гидролиз и фосфолиз; регуляция процессов.
- •48. Влияние гормонов на углеводный обмен. Причины гипергликемии и глюкозурии. Значение определения глюкозы в крови и моче.
- •49. Регуляция и нарушение углеводного обмена.
- •50. Анаэробный обмен углеводов (гликолиз, гликогенолиз), биологическая роль. Ферменты углеводного обмена в энзимодиагностике.
- •51. Анаэробный гликолиз. Реакция гликолитической оксиредукции и ее роль.
- •52. Анаэробный обмен углеводов (гликолиз, гликогенолиз). Диагностическое определение лантатдегидрогеназы в сыворотке крови.
- •53. Аэробный обмен углеводов в тканях, его значение.
- •54. Взаимосвязь аэробного и анаэробного обмена углеводов. Эффект Пастера и взаимосвязь гликолиза и гликогенолиза.
- •55. Глюконеогенез, источники, механизм и регуляция процесса.
- •56. Обмен пировиноградной кислоты в тканях.
- •57. Обмен углеводов. Пентозный цикл окисления углеводов, его распространение, роль, нарушения.
- •59. Классификация липидов. Триадилглицерин, строение, роль. Высшие жирные кислоты. Роль полиненасыщенных жирных кислот.
- •67. Обмен глицерина в тканях. Метаболизм глицерина
- •Образование ацетил-sКоА из лимонной кислоты
- •Образование малонил-sКоА из ацетил-sКоА
- •1. Введение. Что такое витамины?
- •3. Классификация витаминов. В чем функциональное различие водорастворимых и жирорастворимых витаминов?
- •Классификация витаминов
- •4. Понятие о а-, гипо- и гипервитаминозах. Приведите примеры. Причины а- и гиповитаминозов. Авитаминоз, гиповитаминоз и гипервитаминоз
- •Витамин а (ретинол, антиксерофтальмический) Источники
- •Участие ретиноевой кислоты в дифференцировке, делении и росте клеток
- •Гиповитаминоз Причина
- •Клиническая картина
- •Гипервитаминоз Причина
- •Клиническая картина
- •7. Витамин d: строение, суточная потребность, активные формы в организме. Превращения витамина d в организме. Биологическое значение витамина d.
- •Витамин d (кальциферол, антирахитический) Источники
- •Суточная потребность
- •Строение двух форм витамина d
- •Строение кальцитриола
- •Биохимические функции
- •Гиповитаминоз
- •Приобретенный гиповитаминоз
- •Наследственный гиповитаминоз
- •Клиническая картина
- •Гипервитаминоз Причина
- •Клиническая картина
- •6 Часть
- •34.Классификация рецепторов. Охарактеризуйте механизмы действия гормонов.
- •36. Гормоны, общаяхар-ка. Классификация по мех-му действия. Мех-м действия стероидных гормонов.
- •37 Тропные гормоны гипофиза, их структура и роль.
- •38. Гормоны гипоталамуса. Структура и роль вазопрессина и окситоцина.
- •40.Гормоны щитовидной железы, их строение и роль в обмене веществ. Синтез йодсодержащих гормонов щитовидной железы. Сравнительная характеристика гипо- и гипертиреоза.
- •41.Гормональная регуляция обмена кальция в организме
- •42.Кальцитонин и гормоныпаращитовидныхжелез: структура, механизмдействия, биохимическиеэффекты, биологическая роль, патология при нарушениисинтеза.
- •45. Гормоны мозговой части надпочечников. Структура, обмен, роль. Феохромоцитома
- •46.Гормоны половых желез. Строение, функции, влияние на обмен веществ.
- •47.Гормоны половых желез, их строение и роль в регуляции физиологических функций и метаболизма.
- •48. Гормональная регуляция овариально-менструального цикла.
- •49.Реннин – ангиотензин – альдостероновая система. Ее значение в регуляции уровня артериального давления.
- •50. Гормоны поджелудочной железы. Структура и роль в обмене веществ. Нарушение функций
- •51.Инсулин и глюкогон, строение. Роль. Мех-м действия.
- •52.Гормоны, которые регулируют водно-солевой обмен.
- •1. Синтез и секреция антидиуретического гормона
- •2. Механизм действия
- •53.Низкомолекулярные пептиды как новый класс биорегуляторов. Привести примеры.
- •54.Сахарный диабет как медико-социальная проблема. Причины, клиническиепроявления, диагностика, осложнения.
- •55.Сахарный диабет как медико-социальная проблема.Глюкозо-толерантный тест: показания к проведению, методика проведения, оценкарезультатов, диагностическоезначение.
- •56.Производные арахидоновой кислоты – эйкозаноиды: структура, механизм действия, биохимические эффекты, биологическая роль. Простагландины, их структура и роль.
- •IV раздел
- •Охарактеризуйте белковый состав крови. Каковы функции белков плазмы крови?
- •Функции белков плазмы крови. Нормальные показатели белков плазмы крови.
- •4 Альбумины крови: особенности строения, функции. Что такое гипер- и гипоальбунемия, их виды, причины, проявления
- •5 Глобулины крови. Ох-ть фракцию а1-глобулинов. Представители. Диагностическое значение.
- •6 Глобулины крови. Охарактеризовать фракцию а2-глобулинов. Представители. Диагностическое значение.
- •7 Церулоплазмин. Болезнь Вильсона – Коновалова.
- •8 Глобулины крови. Охарактеризовать фракцию бета-глобулинов. Представители. Диагностическое значение.
- •9. Глобулины крови. Охарактеризовать фракцию гамма-глобулинов. Представители. Диагностическое значение.
- •10 Белки острой фазы воспаления.
- •11 Каликреин-кининовая система плазмы крови.
- •12 Нарушение белкового состава крови. Гипер – и гипопротеинемии. Причины , диагностическое значение. Диспротеинемии и парапротеинемии.
- •13 Ферменты плазмы крови. Их диагностическое значение. Диагностика отдельных заболеваний по сдвигам ферментного состава плазмы крови.
- •14 Виды ферментов плазмы крови. Ферментные симптомы отдельных заболеваний.
- •15 Химический состав крови: небелковые вещества плазмы крови – азотистые и безазотистые. Общий и остаточный азот. Азотемия, ее виды и причины возникновения.
- •16 Охарактеризовать факторы свертывания крови. Первичный и вторичный гемостаз.
- •17 Гемостаз. Первичный и вторичный.
- •18 Этапы свертывания крови. Охарактеризовать внешний путь свертывания крови. Гемофилии: причины, виды, клинические проявления, тактика ведения пациентов, прогноз
- •19 Этапы свертывания крови. Охарактеризовать внешний путь свертывания крови.
- •20. Сравнительная хар-ка внешнего и внутреннего пути свертывания крови. Нарушения свертывающей системы крови.
- •21 Факторы свертывания крови. Охар-ть процесс превращения фибриногена в фибрин.
- •22 Роль витамина к в процессе свертывания крови. Какие возможны нарушения свертывания крови при недостаточности витамина к?
- •23 Охар-ть противосвертывающую систему крови. Нарушения этого процесса.
- •24 Фибринолитическая система крови. Фибринолиз и его этапы.
- •25 Гем: особенности строения и значение для организма. Синтез гема. Порфирии: причины, проявления, прогноз.
- •27 Распад гема в организме
- •29. Катаболизм гема в организме.
- •1. Эндогенный синтез и повышенная секреция в кровь ионов нсо3–:
- •1. Эндогенный синтез и повышенная секреция в кровь ионов нсо3–:
- •1. Эндогенный синтез и повышенная секреция в кровь ионов нсо3–:
- •45. К действию кислот или оснований организм более устойчив? Объясните почему. Ацидозы и алкалозы: виды, причины.
- •46. Нарушения кос в организме.
- •V раздел
- •1. Понятие о специфическом и неспецифическом иммунитете.
- •2.Иммуноглобулины. Общие принципы строения, значение, виды.
- •3.Виды иммуноглобулинов. Их содержание в норме и диагностическое значение.
- •4. Система комплимента. Пути активации комплимента, его участие в иммунной защите.
- •5.Роль системы комплимента в иммунной защите. Сравните эффективность классического и альтернативного путей активации комплимента.
- •6.Интерфероны. Виды интерферонов, их биологические эффекты.
- •7.Биологические эффекты интерферонов. Их виды.(тоже самое что 6!!!!!!)
- •8. Особенности химического состава и метаболизма корковой и мозговой части почек. Гормональная и метаболическая функция почек.
- •10. Мочеобразование. Процесс фильтрации. Первичная моча. Ее состав. Сравнительная характеристика первичной и конечной мочи.
- •11. Мочеобразование. Процесс реабсорбции. Особенности реабсорбции натрия, калия, глюкозы, мочевины. Гормональная регуляция процесса реабсорбции воды.
- •12. Мочеобразование. Процесс секреции. Выведение мочевины почками. Ретенционная гиперазотемия.
- •13. Участие почек в регуляции кислотно-основного состояния и водно-солевого обмена организма.
- •14. Гормональная регуляция процесса реабсорбции воды. Понятие о несахарном диабете, проявления, изменения лобораторных показателей. Сравните показатели мочи при сахарном и несахарном диабетах.
- •15. Роль почек в регуляции артериального давления. Ренин-ангиотензин-альдостероновая система. Ее значение в организме.
- •16. Химический состав и физико-химические свойства мочи в норме. Определение рН мочи, зависимость рН мочи от питания.
- •17. (16)Химический состав и химико-физические свойства мочи. Хар-ка диуреза и причины возможных изменений.
- •18. Химический состав и физико-химические свойства мочи в норме.
- •19. Глюкозурия как диагностический критерий. Изменения свойств мочи при глюкозурии.
- •20. Участие почек в регуляции кислотно-основного состояния. Охарактеризуйте процесс ацидогенеза.
- •21. Участие почек в регуляции кислотно-основного состояния. Охарактеризуйте процесс аммониегенеза.
- •22. Участие почек в регуляции кислотно-основного состояния. Охарактеризуйте процесс реабсорбции бикарбонатов.
- •23. Ренин-ангиотензивная система, биохимические механизмы возникновения почечной гипертензии.
- •24. Протеинурия как диагностический критерий. Виды протеинурий.
- •25. Характеристика диуреза и причины возможных изменений.
- •26. Патологические вещества мочи: диагностическое значение определение белка и крови.
- •27. Патологические вещества мочи: диагностическое значение определение желчных кислот и билирубина.(26).
- •28. Патологические вещества мочи: диагностическое значение определения глюкозы и ацетона.(кетоновые тела)
- •29. Обмен воды в организме. Биохимическое значение воды. Гипер- и гипогидротация.
- •30. Понятие о водных бассейнах организма. Онкотическое давление. Механизм образование протеиногенных отеков.
- •1. Онкотическое давление. Механизм и причины возникновения протеиногенных отеков.
- •2. Трансмембранный градиент натрия и калия. Работа натрий-калиевой-атф-азы. Ее биологическое значение.
- •3. Роль и обмен железа в организме. Понятие о гемосидерозах и железодефицитных анемиях.
- •4. Роль и обмен меди в организме. Болезнь Вильсона –Коновалова.
- •5. Минеральные вещества. Роль кальция и фосфора в организме. Регуляция их обмена. Диагностическое определение кальция в сыворотке крови, его нормальное содержание.
- •6. Регуляция водно-солевого обмена. Структура и механизм действия вазопрессина и альдостерона.Гиперальдостеронизм. Синдром Кона.
- •7. Роль ренин-ангиотензин-альдостероновой системы в регуляции водно-минерального обмена.
- •8. Микроэлементы, распространение и роль.
- •10. Роль печени в обмене липидов и жирных кислот.
- •12. Роль печени в обмене углеводов. Содержание глюкозы в крови и значение ее определения.
- •13. Роль печени в поддержании уровня глюкозы крови.
- •14. Желчеобразующая функция печени.
- •15. Химический состав и роль желчи; мех-м регуляции образования и выделения.
- •16. Детоксиксикационная функция печени. Разновидности механизмов. Роль цитохрома р-450
- •17. Роль печени в пигментном обмене. Понятие о желтухах.
- •18. Желтухи. Гемолитическая желтуха
- •19. Желтухи. Паренхиматозная желтуха.
- •20. Желтухи. Обтурационная желтуха.
- •21. Азотистый обмен в печени.
- •23. Биохимический состав мышц. Экстрактивные вещества мышц, азотистые и безазотистые, их структура и роль
- •24. Макроэргические соединения мышц. Структура, образование. Роль атф и креотинфосфата
- •28 Биохимическая характеристика компонентов соединительной ткани.
- •29 Общая хар-ка структуры белков соединительной ткани и их роль
- •30 Общая хар-ка гликозаминогликанов в основном веществе соединительной ткани, их строение , роль
- •31 Спецефические особенности метаболизма соединительной ткани и его регуляция. Изменения соединительной ткани при старении, коллагенозах, мукополисахаридах
- •32 Химический состав нервной ткани, особенности состава белого и серого вещества головного мозга
- •33 Углеводный , белковый и липидный состав нервной ткани. Биохимический состав и особенности строения миелиновых оболочек
- •34 Особенности углеводного и энергетического обмена нервной ткани.
- •35 Особенности обмена веществ мозговой ткани
- •36 Молекулярные основы синоптической передачи и возможные нарушения
- •37 Регуляторные пептиды мозга. Опиоидные пептиды. Механизм действия
- •38 Нейромедиаторы, их виды
- •39 Дайте характеристику ацетилхолина как одного из основных медиаторов периферической нервной системы. Его обмен в организме.
- •40 Дайте характеристику адреналину и норадреналину как нейромедиаторов. Особенности их обмена.
- •42 Дать хар-ку гамк и глицина как основным тормозным нейромедиаторам цнс. Особенности их обмена.
- •43 Виды рецепторов нервной системы.
- •44 Медиаторы, их структура, роль образования и распада.
- •45 Биохимические основы кратковременной и долговременной памяти
7. Роль ренин-ангиотензин-альдостероновой системы в регуляции водно-минерального обмена.
Главным механизмом регуляции синтеза и секреции альдостерона служит система ренинангиотензин.Ренин - протеолитический фермент, продуцируемый юкстагломерулярными клетками, расположенными вдоль конечной части афферентных (приносящих) артериол, входящих в почечные клубочки .Юкстагломерулярные клетки особенно чувствительны к снижению перфузионного давления в почках. Уменьшение АД (кровотечение, потеря жидкости, снижение концентрации NaCl) сопровождается падением перфузионного давления в приносящих артериолах клубочка и соответствующей стимуляцией высвобождения ренина.
Субстратом для ренина служит ангиотензиноген. Ангиотензиноген - α2-глобулин, содержащий более чем 400 аминокислотных остатков. Образование ангиотензиногена происходит в печени и стимулируется глюкокортикоидами и эстрогенами. Ренин гидролизует пептидную связь в молекуле ангиотензиногена и отщепляет N-концевой декапептид (ангиотензин I), не имеющий биологической активности.
Под действием карбоксидипептидилпептидазы, или антиотензин-превращающего фермента (АПФ), выявленного в эндотелиальных клетках, лёгких и плазме крови, с С-конца ангиотензина I удаляются 2 аминокислоты и образуется октапептид - ангиотензин II.
Ангиотензин II, связываясь со специфическими рецепторами, локализованными на поверхности клеток клубочковой зоны коры надпочечников.и ГМК, вызывает изменение внутриклеточной концентрации диацилглицерола и инозитолтрифосфата. Инозитолтрифосфат стимулирует высвобождение из ЭР ионов кальция, совместно с которым активирует протеинкиназу С, опосредуя тем самым специфический биологический ответ клетки на действие ангиотензина П.
При участии аминопептидаз ангиотензин II превращается в ангиотензин III - гептапептид, проявляющий активность ангиотензина II. Однако концентрация гептапептида в плазме крови в 4 раза меньше концентрации октапептида, и поэтому большинство эффектов являются результатом действия ангиотензина П. Дальнейшее расщепление ангиотензина II и ангиотензина III протекает при участии специфических протеаз (ангиотензиназ).
Ангиотензин II оказывает стимулирующее действие на продукцию и секрецию альдостерона клетками клубочковой зоны коры надпочечников, который, в свою очередь, вызывает задержку ионов натрия и воды, в результате чего объём жидкости в организме восстанавливается. Кроме этого, ангиотензин II, присутствуя в крови в высоких концентрациях, оказывает мощное сосудосуживающее действие и тем самым повышает АД.
8. Микроэлементы, распространение и роль.
1. ЖЕЛЕЗО.
Содержание в организме. У взрослого человека содержиться 4,2 г железа, 70-80% его включено в гемоглобин, 5-10% - в миоглобин, около 1% находится в дыхательных ситемах, остальное – резервное железо.Пищевые источникиСуточная потребность: 10 мг для мужчин, 12-15 мг для женщин.Обмен. Гемовое железо всасывается в составе порфиринового макроцикла, негемовое – в виде ионов Fe2+. Для оптимального усвоения железа необходима нормальная секреция желудочного сока. Среди пищевых факторов увеличивает всасывание железа витамин С, аминокислоты, моносахара, снижают – фосфаты и полифенольные соединения (например, кофе). Из просвета кишечника железо всасывается в комплексе с мукозным трансферрином, а в крови транспортируется трасферрином, белком фракции b-глобулинов. Основным белком депонирующим железо в тканях является ферритин, состоящий из 24 субъединиц и связывающий до 4300 ионов железа. В организме существуют 3 метаболических цикла железа: 1. плазма-костный мозг-эритроциты-плазмв; 2. плазма-ферритин-плазма; 3. плазма-миоглобин-железо-содержащие ферменты-плазма. Все три цикла связаны между собой ерез железо плазмы крови. из организмы железо выводится в составе слущенного эпителия тонкой кишки.Функции железа. 1. транспорт электронов; 2. транспорт и депонирование кислорода; 3. участие в формировании активных центров оксидоредуктаз.
ЦИНК.
Является одним из основных эссенциальных микроэлементов в питании человека и животных. Содержание в организме. В организме человека содержится 2-3 г цинка, 60% которого находится в скелетных мышцах. У мужчин 15 мг цинка содержится в предстательной железе.Пищевые источники: печень, какао, мясо, птица, бобовые, пшеничные отруби и крупы, твердые сыры, креветки, орехи грецкие, рыба.Суточная потребность: 10-22 мг, беременные –10-30 мг, кормящие женщины – 13-54 мг.Обмен. Абсорбция солей цинка из пищи составляет 50%, белковая диета повышает всасывание цинка, а высоко содержание фосфатов и кальция, наоборот, снижает, причем кальций тормозит всасывание цинка только в присутствии фитиновой кислоты, содержащейся в хлебных злаках и образующей с ионами кальция и цинка нерастворимые комплексы. Цинк транспортируется от ЖКТ в печень в комплексе с альбумином, экскретируется в основном из ЖКТ, где он представлен неабсорбированным цинком пищи и эндогенным цинком, выделенным с желчью.Биологическая роль. В настоящее время цинк найден в более, чем в 200 ферментах. Цинк играет важную роль в синтезе белка и нуклеиновых кислот. Он необходим для стабилизации ДНК, РНК и рибосом, обеспечивает обратный процесс денатурации ДНК, входит в состав аминоацил-тРНК-синтетаз и факторов элонгации трансляции. Цинк обнаружен в составе обратной транскриптазы. Роль цинка в стабилизации ДНК состоит в следующем. В нативной ДНК цинк связан с фосфатными группами. При расхождении цепей ДНК цинк образует координационные комплексы с азотистыми основаниями ДНК, удерживая их на определенном расстоянии и способствуя быстрому восстановлению двойной спирали. Цинк способствует усилению синтеза коллагена при заживлении и ран и стабилизации мембран лизосом; снижает транспорт электронов и митохондриальное дыхание. Цинк необходим для образования гексамеров и других кристаллических форм инсулина, в виде которых гормон депонируется, и пролонгирует его физиологическое действие. Цинк влияет на функцию вкусового анализатора; является составной частью алкогольдегидрогеназы и карбоангидразы. Ряд проявлений биологической активности цинка связано с его высоким сродством к тиогруппам, которые цинк стабилизирует предупреждая ох оксление ионами меди и железа.Препараты цинка используется в лечении гепато-церебральной дистрофии, препятствуя всасыванию и усвоению меди, в лечении гнездного облысения (алопеции), гипогонадизма, в комплексной терапии дейтей с церебральными параличами, а также как вяжущее и дезинфецирующее средство при кожных заболеванях
Отсутствие цинка в питании или глубокий его дефицит приводят к развитию специфического микроэлементоза, основными проявлениями которого являются гипогонадизм, замедление роста (карликовость), нарушение оссификации костей, патологические изменения кожи. Относительная недостаточность цинка проявляется: кожными проявлениями (дерматит, экзема, угревая сыпь, плохое заживление ран), аллопеции, медленному росту волос, поражения слизистых оболочек (стоматит, гингивит, хейлит, язвы, эрозии), иммунодефицитом, ухудшению толерантности к глюкозе, замедлению роста и полового созревания детей, угнетением сперматогенеза, гиперхолестеринемией, отклонениями со стороны нервной системы (гиперактивность или депрессия, ухудшение памяти, извращение обоняния и вкуса, анорексия). Недостаточность цинка приводит к тому, что оказывается незанятым много молекулярных сайтов его связывания, что может спровоцировать в организме накопление кадмия и свинца в опасных количествах.Причины недостаточности цинка: потребление в качестве основного продукта питания бездрожжевого теста из муки тонкого помола (высокий уровень фитина – гексафосфатный эфир инозита), кровопотери, вызванные кишечными гельминтами; потоотделение вызванное высокой температурой внешней среды, алкоголизм, тяжелые циррозы печени, хронические заболевания кишечника с нарушением всасывания, беременность, инфекционные болезни, хирургические вмешательства, тяжелые ожоги, вегетарианство.
3. МЕДЬ.
Содержание в организме. В организме человека содержится в среднем 75-150 мг меди, окколо 50% этого количества находится в мышцах и костях. Кроме того, высоко содержание меди в печени, в головном мозге, сердце и почках.Пищевые источники. Печень, продукты моря, зернобобовые, гречневая и овсяная крупа, орехи. Очень низкое содержание меди в молочных продуктах.Суточная потребность. 80 мкг/кг для детей раннего возраста, 40 мкг/кг – для более старших детей, 30 мкг/кг – для взрослых.Обмен. Медь всасывается в верхних отделах кишечника и частично в желудке в комплексе с a-аминокислотами и с участием специфически транспортных белков. Всасывание меди значительно снижается под влиянием сульфидов, образующих с ней нерастворимые соли. В комплексе с сывороточным альбумином медь поступает в печень, где включается в состав особого белка – церулоплазмина.Биологическая роль. Известно более 30 белков и ферментов , в состав которых входит медь. Медь входит в состав цитохромоксидазы – терминального звена митохондриальной цепи переноса электронов, играющей важную роль в процессах биологического окисления и окислительного фосфорилирования генерации АТФ; моноаминооксидазы, катализирующей окислительное дезаминирование катехоламинов, серотонина и др., а также лизина (лизилоксидаза). Последний процесс определяет образование поперечных сшивок в молекуле коллагена и эластина. Медь участвует в построении тирозиназы, катализирующей превращение тирозина в дофамин и меланины. Отсутствие или недостаточная активность итрозиназы приводит к альбинизму, а ее черезмерная активность – к развитию меланомы (быстропрогрессирующего рака кожи). Церулоплазмин содержит 8 атомов меди и обладает антиоксидантными свыойствами, участвует в метаболизме железа, окисляя двухвалентное железо в трехвалентное, способное транспортироваться трансферрином.Причины возникновения недостаточности меди: молочная диета, парентеральное питание, кормление детей молочными смесями с низким содержанием меди, синдром мальабсорбции (нарушенного всасывания), нефротический синдром, белково-калорийная недостаточность. Симптомы недостаточности – возникновение дефектного коллагена, нарушается образование волокон соединительной ткани сосудов, скелета и других органов, отмечается похудание, вялость.При возникновении в организме избытка меди развивается гепато-церебральная дистрофия, или болезнь Вильсона-Коновалова, характеризующейся накоплением меди в головном мозге, печени, что приводит к нарушению функций центральной нервной системы. Более того, изменения уровня меди обнаружено при шизофрении и эпилепсии. Препараты меди используют для снижения возбудимости при психических заболеваниях.
4. МАРГАНЕЦ.
В организме человека содержится 12-20 мг марганца, наиболее высоко содержание металла в мозге, печени, почках поджелудочной железе.Содержание металла в организме регулируется путем изменения скорости его экскреции ( в соновном желчью). Усвояемость марганца колеблется от 37% до 63% его содержания в рационе. Высокое содержание кальция и фосфора в диете препятствует всасывания марганца. В крови марганец транспортируется b1-глобулином (трансманганин).Пищевые источники. Наиболее богаты марганцем злаковые, бобовые, орехи, кофе и чай, невысокий уровень его в мясе, рыбе, морепродуктах, молоке, яйцах.Суточная потребность составляет 2-3 мг, рекомендуемый уровень его потребления – 5-10мг.Биологическая роль. В большинстве случаев марганец не является кофактором ферментов, но способен оказывать активирующее воздействие на их каталитическую активность (аллостерический активатор). К таким ферментам относятся аргиназа, фосфатаза, изоцитратдегидрогеназа, РНК- и ДНК-полимераза и др. Существуют, однако, ферменты, для которых присутствие марганца обязательно. Это мукополисахарид-полимераза и галактозилтрансфераза, участвующие в биосинтезе хондроитинсульфата, одного из основных компонентов хрящевой ткани. Третий фермент – пируваткорбоксилаза – играет ведущую роль в регуляции гликонеогенеза. Марганец принимает участие в регуляции углеводно-липидного обмена, активно стимулируя синтез холестерина. У животных марганец участвует в синтезе витамина С.Недостаточность марганца проявляется выраженной гипохолестеринемией, похуданием, дерматитом, тошнотой, рвотой, в эксперименте обнаружено уменьшение островков Лангерганса. Снижение уровня марганца отмечено в крови и тканях больных сахарным диабетом.
5. ЙОД.
В организме человека содержится 15-20 мг йода, 8 мг сконцентрировано в щитовидной железе. Всасывается в кишечнике в виде неорганических йодидов.Пищевые источники содержание йода в продуктах зависит от уровня йода в почве и в воде данной местности. Очень богаты йодом морская капуста, морская рыба и ракообразные. В мясе, молочных продуктах содержание йода составляет 7-16 мкг/100 г съедобно части. Для профилактике зоба в эндемических областях используют иодированную поваренную соль.Суточная потребность составляет 100-150 мкг.Биологическая роль. Йод – единственный из известных микроэлементов, участвующих в биосинтезе гормонов (тироксина – гормона щитовидной железы). Тироксин контролирует состояние энергетического обмена, уровень теплопродукции; активно воздействие на физическое и психическое развитие, оказывает выраженное влияние на все виды обменов в организме человека. Молекулярный механизм действия тироксина связан с его активным влиянием на процессы биологического окисления и окислительного фосфорилирования.Содержание йода в крови значительно снижается при гипотиреозе, повышается – при гипертиреозе. При избытке тироксина снижается интенсивность образования АТФ. Недостаточность йода приводит к развитию эндемического зоба.
6. МАГНИЙ.
Содержание магния в организме человека не более 20 мг.Пищевые источники овощи и фрукты, особенно абрикосы, персики, цветная капуста, помидоры и картофель. Суточная потребность 1,5 г магния.Биологическая роль. Магний является активатором многих ферментов, входит в состав киназ, осуществляющих перенос фосфатной группы от молекулы АТФ на различные субстраты (фосфотрансферазы). Ионы магния связывают между собой субъединицы рибосомы в процессе биосинтеза белка.Недостаток магния проявляется в переутомлении, раздражении, середечно-сосудистыми заболеваниями, в частности, возникновением инфаркта миокарда.
БИОХИМИЯ ПЕЧЕНИ
9. Роль печени в обмене белков и аминокислот. Печень играет центральную роль в обмене белков. Она выполняет следующие основные функции: синтез специфических белков плазмы; образование мочевины и мочевой кислоты; синтез холина и креатина; трансаминирование и дезаминирование аминокислот, что весьма важно для взаимных превращений аминокислот, а также для процесса глюконеогенеза и образования кетоновых тел. Все альбумины плазмы, 75–90% α-глобу-линов и 50% β-глобулинов синтезируются гепатоцитами. Лишь γ-гло-булины продуцируются не гепатоцитами, а системой макрофагов, к которой относятся звездчатые ретикулоэндотелиоциты (клетки Купфера). В основном γ-глобулины образуются в печени. Печень является единственным органом, где синтезируются такие важные для организма белки, как протромбин, фибриноген, проконвертин и проакцелерин.При заболеваниях печени определение фракционного состава белков плазмы (или сыворотки) крови нередко представляет интерес как в диагностическом, так и в прогностическом плане. Известно, что патологический процесс в гепатоцитах резко снижает их синтетические возможности. В результате содержание альбумина в плазме крови резко падает, что может привести к снижению онкотического давления плазмы крови, развитию отеков, а затем асцита. Отмечено, что при циррозах печени, протекающих с явлениями асцита, содержание альбуминов в сыворотке крови на 20% ниже, чем при циррозах без асцита.Нарушение синтеза ряда белковых факторов системы свертывания крови при тяжелых заболеваниях печени может привести к геморрагическим явлениям.При поражениях печени нарушается также процесс дезаминирования аминокислот, что способствует увеличению их концентрации в крови и моче. Так, если в норме содержание азота аминокислот в сыворотке крови составляет примерно 2,9–4,3 ммоль/л, то при тяжелых заболеваниях печени (атрофические процессы) эта величина возрастает до 21 ммоль/л, что приводит к аминоацидурии. Например, при острой атрофии печени количество тирозина в суточном количестве мочи может достигать 2 г (при норме 0,02–0,05 г/сут).В организме образование мочевины в основном происходит в печени. Синтез мочевины связан с затратой довольно значительного количества энергии (на образование 1 молекулы мочевины расходуется 3 молекулы АТФ). При заболевании печени, когда количество АТФ в гепатоцитах уменьшено, синтез мочевины нарушается. Показательно в этих случаях определение в сыворотке отношения азота мочевины к аминоазоту. В норме это отношение равно 2:1, а при тяжелом поражении печени составляет 1:1Большая часть мочевой кислоты также образуется в печени, где много фермента ксантиноксидазы, при участии которого оксипурины (гипо-ксантин и ксантин) превращаются в мочевую кислоту. Нельзя забывать о роли печени и в синтезе креатина. Имеются два источника креатина в организме. Существует экзогенный креатин, т.е. креатин пищевых продуктов (мясо, печень и др.), и эндогенный креатин, синтезирующийся в тканях. Синтез креатина происходит в основном в печени, откуда он с током крови поступает в мышечную ткань. Здесь креатин, фосфорилируясь, превращается в креатинфосфат, а из последнего образуется креатинин.
Аминокислоты:
Для синтеза белков используются аминокислоты, образующиеся при метаболизме эндогенных (в первую очередь мышечных) и пищевых белков, а также синтезируемые в самой печени. Большинство аминокислот, поступающих в печень по воротной вене, метаболизируются до мочевины (за исключением разветвленных аминокислот - лейцина , изолейцина и валина ).
Некоторые аминокислоты (например, аланин ) в свободном виде поступают обратно в кровь. Наконец, аминокислоты используются для синтеза внутриклеточных белков гепатоцитов, сывороточных белков и таких веществ, как глутатион , глутамин , таурин , карнозин и креатинин . Нарушение метаболизма аминокислот может привести к изменению их сывороточных концентраций. При этом уровень ароматических аминокислот и метионина , метаболизирующихся в печени, повышается, а разветвленных аминокислот, используемых скелетными мышцами , - остается нормальным или понижается.Предполагают, что нарушение соотношения этих аминокислот играет роль в патогенезе печеночной энцефалопатии , однако это не доказано.Аминокислоты разрушаются в печени при помощи реакций трансаминирования и окислительного дезаминирования. При окислительном дезаминировании из аминокислот образуются кетокислоты и аммиак . Эти реакции катализируются оксидазой L-аминокислот . Однако у человека активность этого фермента низка, и поэтому основной путь распада аминокислот следующий: сначала происходит трансаминирование - перенос аминогруппы с аминокислоты на альфа-кетоглутаровую кислоту с образованием соответствующей альфа-кетокислоты и глутаминовой кислоты , - а затем уже окислительное дезаминирование глутаминовой кислоты . Трансаминирование катализируется аминотрансферазами (трансаминазами) . Эти ферменты в большом количестве содержатся в печени; они также обнаруживаются в почках, мышцах, сердце, легких и ЦНС. Наиболее изучена АсАТ . Ее сывороточная активность повышается при различных болезнях печени (например, при острых вирусном и лекарственном гепатитах ). Окислительное дезаминирование глутаминовой кислоты катализируется глутаматдегидрогеназой . Образующиеся в результате трансаминирования альфа-кетокислоты могут вступать в цикл Кребса , участвовать в метаболизме углеводов и липидов. Кроме того, с помощью трансаминирования в печени синтезируются многие аминокислоты, за исключением незаменимых аминокислот .Распад некоторых аминокислот идет по иному пути: так, глицин дезаминируется с помощью глициноксидазы . При тяжелом поражении печени (например, обширном некрозе печени ) метаболизм аминокислот нарушается, содержание их в крови в свободной форме повышается, и в результате может развиться гипераминоацидемическая аминоацидурия.