Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ekzamen_BKh.docx
Скачиваний:
222
Добавлен:
27.01.2020
Размер:
3.87 Mб
Скачать

53. Аэробный обмен углеводов в тканях, его значение.

Аэробный гликолиз протекает в присутствии кислорода, включает те же стадии, что и анаэробный гликолиз, за исключением последней стадии: восстановления пирувата до лактата, которая протекает в анаэробных условиях

В организме человека и животных различают:

– аэробный гликолиз, что сопровождается образованием из одной молекулы глюкозы двух молекул пировиноградной

кислоты (пирувата):

Аэробный гликолиз можно рассматривать как промежуточный (гликолитический) этап аэробного окисления глюкозы до конечных продуктов — двуокиси углерода и воды (см. п. 11.2);

– анаэробный гликолиз, что сопровождается образованием из одной молекулы глюкозы двух молекул молочной кислоты (лактата):

Для большинства тканей человека и высших животных в условиях нормальной жизнедеятельности характерен аэробный гликолиз, то есть образование из глюкозы пирувата, который в дальнейшем окисляется до углекислого газа и воды. Анаэробный гликолиз имеет место преимущественно в мышцах при интенсивной физической деятельности, то есть при относительной кислородной недостаточности, и в некоторых высокоспециализированных клетках (в частности, в эритроцитах, в которых отсутствуют митохондрии) или при определенных патологических условиях (клетки злокачественных опухолей).

54. Взаимосвязь аэробного и анаэробного обмена углеводов. Эффект Пастера и взаимосвязь гликолиза и гликогенолиза.

Эффект Пастера - снижение скорости потребления глюкозы и прекращение накопления лактата в присутствии кислорода. О2 тормозит анаэробный гликолиз. Переход в присутствии О2 от анаэробного гликолиза или брожения к дыханию, состоит в переключении клетки на более экономный путь получения энергии. Молекулярный механизм эффекта заключается в том, что в конкуренции м-у системами дыхания и гликолиза за АДФ, используемый для образования АТФ. В аэробных условиях гораздо успешнее чем в анаэробных происходит генерация АТФ, а т.ж. удаление восстановленного НАД (НАДН2). Т.е. уменьшение в присутствии О2 АДФ и соответствующее увеличение АТФ ведут к подавлению анаэробного гликолиза.

55. Глюконеогенез, источники, механизм и регуляция процесса.

Глюконеогенез – синтез глюкозы из неуглеводных продуктов. Такими продуктами или метаболитами являются в первую очередь молочная и пировиноградная кислоты, так называемые гликогенные аминокислоты, глицерол и ряд других соединений. Иными словами, предшественниками

глюкозы в глюконеогенезе может быть пируват или любое соединение, превращающееся в процессе катаболизма в пируват или один из промежуточных продуктов цикла трикарбоновых кислот *.

Большинство стадий глюконеогенеза представляет собой обращение реакции гликолиза. Только 3 реакции гликолиза (гексокиназная, фосфо-фруктокиназная и пируваткиназная) необратимы, поэтому в процесс глюконеогенеза на 3 этапах используются другие ферменты. Рассмотрим путь синтеза глюкозы из пирувата.

56. Обмен пировиноградной кислоты в тканях.

Пировиноградная кислота (С3Н4O3) — α-кетопропионовая кислота. Используется обычно в виде солей — пируватов. Он является конечным продуктом метаболизма глюкозы в процессе гликолиза. Одна молекула глюкозы превращается при этом в две молекулы пировиноградной кислоты. Дальнейший метаболизм пировиноградной кислоты возможен двумя путями — аэробным и анаэробным. В условиях достаточного поступления кислорода, пировиноградная кислота превращается в ацетил-кофермент А, являющийся основным субстратом для серии реакций Пируват также может быть превращён в анаплеротической реакции в оксалоацетат. Оксалоацетат затем окисляется до углекислого газа и воды. Если кислорода недостаточно, пировиноградная кислота подвергается анаэробному расщеплению с образованием молочной кислоты При анаэробном дыхании в клетках пируват, полученный при гликолизе, преобразуется в лактат при помощи фермента лактатдегидрогеназы и NADP в процессе лактатной ферментации, либо в ацетальдегид и затем в этанол в процессе алкогольной ферментации. Пировиноградная кислота является «точкой пересечения» многих метаболических путей. Пируват может быть превращён обратно в глюкозу в процессе глюконеогенеза, или в жирные кислоты или энергию через ацетил-КоА, в аминокислоту аланин, или в этанол. Например, работающая мышца выделяет в кровь наряду с молочной кислотой значительные количества аланина. Аланин образуется в мышце из пировиноградной кислоты путем трансаминирования. Из кровотока аланин поглощается печенью, превращается в пируват, а пируват используется для глюконеогенеза (глюкозо-аланиновый цикл, см. рис. 9.24).

Пировиноградная кислота содержится во всех тканях и органах и, являясь связующим звеном обмена углеводов, жиров и белков, играет важную роль в обмене веществ. Концентрация пировиноградной кислоты в тканях изменяется при болезнях печени, некоторых формах нефрита, раке, авитаминозах, особенно при недостатке витамина В1. Нарушение обмена пировиноградной кислоты приводит к ацетонурии.

Соседние файлы в предмете Биохимия