
- •Изомерия и номенклатура предельных углеводородов.
- •2, Характеристика ковалентных связей в молекуле алканов. Понятие о свободном вращении вокруг с-с связи. Конформации алканов. Проекции Ньюмена.
- •Методы получения алканов.
- •Химические свойства предельных углеводородов. Реакции алканов, протекающие по гомолитическому и гетеролитическому механизмам. Понятие о цепном свободнорадикальном механизме реакции.
- •2. Нитрование (замещение нитрогруппой no2).
- •Понятие о переходном состоянии и энергии активации.
- •Суть теории переходного состояния (активированного комплекса):
- •Устойчивость свободных радикалов и карбениевых катионов. Перегруппировки карбениевых катионов.
- •Стереохимия и стабильность циклических углеводородов. Особенности химических свойств циклопропана. Строение циклопропана.
- •Методы получения алкенов. Строение, химические свойства алкенов. Механизм реакции электрофильного присоединения к двойной углерод-углеродной связи.
- •2. Действием на спирты водоотнимающих средств:
- •Химические свойства алкенов
- •1. Каталитическое гидрирование алкенов
- •2. Восстановление двойной связи с помощью диимида
- •3. Реакции электрофильного присоединения по двойной связи алкенов
- •3.А. Присоединение галогенов
- •Номенклатура диеновых углеводородов. Строение, химические свойства алленов и диеновых углеводородов с сопряженной системой двойных связей.
- •10. Методы получения, строения и химические свойства алкинов. Кислотность алкинов.
- •Реакции гидрогалогенирования
- •Гидратация
- •Реакции карбонилирования
- •Прочие реакции электрофильного присоединения
- •Реакции нуклеофильного присоединения
- •Типовые реакции нуклеофильного присоединения
- •Реакции радикального присоединения
- •Полимеризация
- •Идентификация алкинов
- •Ароматическое состояние. Бензоидные и небензоидные ароматические соединения.
- •12. Механизм реакции электрофильного замещения в ароматическом ряду.
- •Реакции ароматического электрофильного замещения
- •Реакции seAr
- •13. Химические свойства алкил- и алкенилбензолов.
- •15. Свойства полиароматических углеводородов с изолированными и конденсированными ядрами.
- •Химические свойства рассмотрим на примере нафталина.
- •16. Оптическая изомерия. Атропизомерия. Проекции Фишера. Абсолютная и относительные конфигурации. D,l-ряды. Классификация пространственных изомеров.
- •1. Энантиомерия
- •2. Относительная и абсолютная конфигурации
- •3. Диастереомерия
- •17. Свойства и методы получения галогенопроизводных алифатических углеводородов. Химические свойства
- •1. Реакции нуклеофильного замещения
- •Механизм реакций нуклеофильного замещения
- •2. Реакции элиминирования (отщепления) – дегидрогалогенирования
- •Механизмы реакций элиминирования
- •3. Взаимодействие с металлами
- •4. Реакции окисления
- •Получение галогенопроизводных
- •1. Галогенирование углеводородов
- •3. Замещение гидроксигруппы спиртов на галоген
- •4. Реакция Бородина-Хунсдиккера
- •5. Галоформная реакция
- •18. Механизм реакции нуклеофильного замещения у sp3 -гибридизованного атома углерода.
- •19. Реакции элиминирования. Механизмы e1 и е2.
- •2. Мономолекулярное отщепление е1
- •3. Сравнение реакций нуклеофильного замещения и элиминирования
- •20. Механизмы замещения атомов галогена в ароматическом кольце.
- •21. Получение и свойства спиртов и фенолов.
- •22. Строение, получение и свойства простых эфиров.
- •Номенклатура простых эфиров.
- •Химические свойства простых эфиров.
- •Получение простых эфиров.
- •23. Циклические простые эфиры. Простые и свойства эпоксидов.
- •1. Галогенирование.
- •2. Альдольная конденсация
- •3. Рацемизация оптически активных кетонов
- •25. Непредельные карбонильные соединения. Винилогмя. Строение и стабильность карбениевых анионов.
- •26. Номенклатура и особенности свойства 1,2-,1,3-, 1,4-дикарбонильных соединений. Кетоенольная таутомерия у 1,2-,1,3-, 1,4-дикарбонильных соединений.
- •27. Строение, методы получения и свойства кетенов.
- •28. Строение, методы получения, окислительно-восстановительные потенциалыи свойства хинонов.
- •Химические свойства
- •Методы синтеза
- •29. Изомерия, номенклатура и методы получения предельных и ароматических карбоновых кислот.
- •30. Строение карбоксилат аниона. Кислотность карбоновых кислот. Стерические орто-эффекты и их влияние на кислотность карбоновых кислот.
- •31. Методы получения и свойства производных карбоновых кислот.
- •32. Механизм реакции нуклеофильного замещения у карбоксильного атома углерода. Реакции нуклеофильного замещения. Функциональные производные карбоновых кислот.
- •33. Декарбоксилирование ароматических карбоновых кислот как реакция электрофильного замещения.
- •34. Особенности химических свойств двухосновных карбоновых кислот и их производных.
- •35. «Малоновый синтез».
- •36. Конденсации Дикмана, Кляйзена, Кневенагеля, Перкина.
- •37. Ацилоиновая конденсация.
- •38. Строение нитрогруппы. Методы получения и химические свойства нитросоединений.
- •Соединения с нитрогруппой в ядре
- •Получение ароматических нитросоединений
- •39. Отличия свойств нитросоединений от эфиров азотистой кислоты.
- •40. Схема восстановления нитросоединений в кислой, нейтральной и щелочной среде. Перегруппировки Валлаха, семидиновая, бензидиновая, дифенилиновая.
- •Механизм реакции
- •41. Строение, номенклатура, основность аминов.
- •42. Геометрия молекулы аминов.
- •43. Методы селективного получения аминов. Способы получения
- •44. Химические свойства аминов.
- •Окисление аминов
- •Ароматическое электрофильное замещение в ароматических аминах
- •45. Механизм реакции диазотирования.
- •3. Механизм диазотирования.
- •46. Формыдиазосоединений. Схема Ганча.
- •47. Реакции диазосоединений, протекающие с выделением азота. Механизмыэтих реакций.
- •48. Реакция азосочетания как реакция электрофильного замещения. Условия сочетания с аминами и фенолами. Образование триазенов. Механизм реакции азосочетания
- •49. Методы получения и свойства амидов сульфоновых кислот.
- •50. Строение, получение и свойства алифатических диазосоединений.
- •51. Получение, свойства и применение диазоуксусного эфира.
- •Получение
- •Химические свойства
- •52. Классификация, номенклатура, получение и свойства окси-, аминокислот и их производных. Окси(гидрокси) кислоты
- •Методы получения оксикислот
- •2. Из альдегидов (кетонов), циангидринной синтез
- •3. Получение винных кислот
- •Реакционная способность
- •4. Поведение оксикислот при нагревании
- •5. Реакции окисления
- •6. Образование реактива Фелинга
- •Аминокислоты
- •Методы получения аминокислот
- •Реакционная способность
- •Амфотерность аминокислот
- •Реакции по амино- и карбоксильной группам
- •53. Понятие о биполярном ионе. Изоэлектрическая точка.
- •54. Получение пептидов.
- •Строение пептидов
- •Синтез петидов
- •55. Получение и свойства пятичленных ароматических гетероциклических соединеий (пиррола, фурана, тиофена).
- •56. Строение и свойства пиридина и его производных.
- •57. Синтез производных хинолина по Скраупу и Дебнеру-Миллеру.
- •58. Химические свойства хинолина и его производных.
- •59. Химические свойства изохинолина и его производных.
- •60. Химические свойства индола и его производных.
- •61. Сравнительная характеристика ароматических гетероциклических соединений в реакциях электрофильного и нуклеофильного замещения. Шестичленные азотсодержащие гетероциклы с одним гетероатомами.
- •Пяти- и шестичленные гетероциклы с двумя атомами азота.Имидазол. Пиразол.
- •62. Номенклатура, строение и химические свойства моносахаридов. Мутаротация.
- •III. Реакции окисления.
- •IV. Специфические свойства гликозидного гидроксила. О-гликозиды
- •63. Характеристика типов связей в ди- и полисахаридах.
- •4. Химические свойства дисахаридов в зависимости от типа связи.
- •65. Строение и свойства крахмала и целлюлозы.
Вопросы к экзамену по всему курсу
Изомерия и номенклатура предельных углеводородов.
Гомологический ряд предельных углеводородов (алканов) нормального (неразветвленного) строения и их одновалентные радикалы
Углеводород (алкан) |
Число возможных изомеров у алкана |
Радикал (алкил)
|
||
Формула |
Название |
Формула |
Название |
|
СН4 |
Метан |
1 |
СН3- |
Метил |
С2Н6 |
Этан |
1 |
С2Н5- |
Этил |
С3Н8 |
Пропан |
1 |
С3Н7- |
Пропил |
С4Н10 |
Бутан |
2 |
С4Н9- |
Бутил |
С5Н12 |
Пентан |
3 |
С5Н11- |
Пентил |
С6Н14 |
Гексан |
5 |
С6Н13- |
Гексил |
C7H16 |
Гептан |
9 |
C7H15- |
Гептил |
C8H18 |
Октан |
18 |
C8H17- |
Октил |
С9Н20 |
Нонан |
35 |
С9Н19- |
Нонил |
С10Н22
|
Декан
|
75
|
С10Н21-
|
Децил (декил) |
Номенклатура. Для названия предельных углеводородов применяют в основном систематическую и рациональную номенклатуры.
Названия первых четырех членов гомологического ряда метана тривиальные: метан, этан, пропан, бутан. Начиная с пятого названия образованы от греческих числительных с добавлением суффикса –ан(этим подчеркивается сходство всех предельных углеводородов с родоначальником этого ряда — метаном).
Общее (родовое) название предельных углеводородов — алканы. Названия по систематической номенклатуре составляют следующим образом:
В формуле молекулы алкана выбирают главную цепь — самую длинную.
H3C—CH—CH2—CH—CH2—CH3 -------- | ----------- | CH3 ¦ CH2—CH2—CH3 ---------------------
Затем эту цепь нумеруют с того конца, к которому ближе расположен заместитель (радикал). Если заместителей несколько, то поступают так, чтобы цифры, указывающие их положение, были наименьшими. Заместители перечисляют по алфавиту.
1 2 3 4 H3C—CH—CH2—CH—CH2—CH3 | 5 | 6 7 CH3 CH2—CH2—CH3 |
3. Углеводород называют в таком порядке: вначале указывают (цифрой) место расположения заместителя, затем называют этот заместитель (радикал), а в конце добавляют название главной (самой длинной) цепи. Таким образом, углеводород может быть назван: 2-метил-4-этилгептан (но не 6-метил-4-этилгептан).
Если в главной цепи содержится несколько одинаковых заместителей, то их число обозначают греческим числительным, которое ставят перед названием этих заместителей. Приставки ди-, три-, тетра- и т.д. не влияют на алфавитное расположение заместителей в названии.
Для простейших углеводородов изостроения сохраняются их несистематические названия: изобутан, изопентан, неопентад.
По рациональной номенклатуре алканы рассматривают как производные простейшего углеводорода — метана, в молекуле которого один или несколько водородных атомов замещены на радикалы. Эти заместители (радикалы) называют по старшинству (от менее сложных к более сложным). Если эти заместители одинаковые, то указывают их количество. В основу названия включают слово "метан":
CH3 | H3C—C—CH3 | CH3 |
C2H5 | H3C—CH—CH—CH3 | CH3 |
тетраметилметан (2,2-диметилпропан) |
метилэтилизопропилметан (2,3-диметилпентан) |
Свою номенклатуру имеют и радикалы (углеводородные радикалы). Одновалентные радикалы называют алкилами и обозначают буквой R или Alk. Их общая формула CnH2n + 1. Названия радикалов составляют из названий соответствующих углеводородов заменой суффикса -ан на суффикс -ил (метан — метил, этан — этил, пропан — пропил и т.д.). Двухвалентные радикалы называют, заменяя суффикс-ан на -илиден (исключение — радикал метилен ==СН2). Трехвалентные радикалы имеют суффикс -илидин (исключение — радикал метин єєСН).
Изомерия.
Для алканов характерен самый простой вид изомерии — структурная изомерия.
В молекулах метана, этана и пропана может быть только один порядок соединения атомов.
Если в молекуле алкана содержится более трех углеродных атомов, то порядок их соединения может быть различным — появляется возможность изомерии. Например, для углеводорода С4Н10возможны две структуры:
H H H H | | | | H—C—C—С—С—H | | | | H H H H |
H H H | | | H—C—C—С—H | | | H | H H—C—H | H |
н-бутан (н-C4H10) |
изобутан (изо-С4Н10) |
Один из этих изомеров (н-бутан) содержит неразветвленную углеродную цепь, а другой — изобутан — разветвленную (изостроение). Таким образом, молекулы бутана и изобутана, имея одинаковый состав, различаются между собой химическим строением, т.е. они являются структурными изомерами. Изомеры обладают сходными химическими свойствами и различными — физическими.
Атомы углерода в алканах могут различаться по характеру своего соединения с другими углеродными атомами. Атом углерода, связанный только с одним углеродным атомом, называется первичным, сдвумя — вторичным, с тремя — третичным и, наконец, с четырьмя — четвертичным. Это можно пояснить на примере:
2,2,4-триметилпентан
Здесь первичные углеродные атомы обведены кружком, вторичный — квадратом, третичный — треугольником, четвертичный — пунктирным кружком.
Такое деление имеет большое значение, так как водородные атомы при первичном, вторичном и третичном углеродных атомах обладают различной реакционной способностью.
В ряду радикалов мы также встречаемся с явлением изомерии (см. табл. 2). Причем число изомеров у радикалов значительно больше, чем у соответствующих им алканов. Например, пропан, как известно, изомеров не имеет, а радикал пропил имеет два изомера: н-пропил и изо-пропил:
|
СН3—СН3—СН2— и Н3С—СН—СН3
Это связано с тем, что свободная валентность может находиться при разных углеродных атомах (вторичном и третичном).