Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Книга по генетике.DOC
Скачиваний:
280
Добавлен:
29.05.2014
Размер:
1.74 Mб
Скачать

Раздел 8.2. Трансгенные животные.

Трансгенных животных получают в результате искусствен-

ного введения - трансгеноза, чужеродного генетического мате-

риала, представляющего из себя фрагмент гена или иную после-

довательности ДНК, в оплодотворенную яйцеклетку или в ранние

зародыши млекопитающих. Подобные модели являются идеальными

экспериментальными системами для исследования молекуляр-

но-генетических основ онтогенеза, для изучения функции чуже-

родного гена, оценки его биологического действия на орга-

низм, а также для производства различных манипуляций со спе-

цифическими клеточными клонами in vivo. Разработано несколь-

ко способов получения трансгенных животных. Исторически бо-

лее ранним и широко применяемым до настоящего времени явля-

ется микроиньекция чужеродной ДНК в пронуклеус - ядро опло-

дотворенной яйцеклетки. Существуют детальные описания этого

метода (Аллен и др., 1990; Hogan et al, 1989). Суть метода

состоит в том, что под контролем микроскопа при помощи мик-

романипулятора в мужской пронуклеус оплодотворенной яйцек-

летки тонкой иглой (до 1 микрона) вводят около 2 пиколитров

раствора ДНК. Чужеродная ДНК, вначале свободно лежащая в

нуклеоплазме, в течение нескольких последующих делений дроб-

ления случайным образом интегрирует в один из сайтов ка-

кой-либо хромосомы, то есть встраивается в ДНК-реципиента.

При этом, как показали эксперименты с меченой ДНК, в различ-

ных бластомерах одного и того же дробящегося зародыша интег-

рация может происходить в разные хромсомные сайты и число

интегрированных копий ДНК в каждом из этих сайтов может зна-

чительно варьировать. Тем не менее, поскольку сам эмбрион

развивается, по-сути, из одного бластомера, во всех клетках

такой особи после рождения чужеродная ДНК обычно находится

только в одном каком-нибудь хромосомном сайте, хотя у разных

особей она интегрируется по-разному и в разные сайты. После

введения чужеродной ДНК в пронуклеус яйцеклетку транспланти-

руют самке-реципиенту. Доля трансгенных животных в потомстве

таких самок варьирует от 10% до 30%. Это означает, что по-

добный механический вариант трансфекции чужеродных генов на

ранней стадии эмбриогенеза является чрезвычайно эффективным.

Идентификацию трансгенных животных производят путем анализа

геномной ДНК на наличие экзогенных последовательностей, ис-

пользуя при этом методы блот-гибридизации или ПЦР. Экспрес-

сию введенного гена анализируют путем идентификации специфи-

ческих мРНК и/или соответствующих белковых продуктов в раз-

личных тканях трансгенного животного.

Другой, более более прогрессивный способ получения

трансгенных животных основан на том, что трансфекции подвер-

гается не зигота, а тотипотентные эмбриональные стволовые

клетки (см.ниже), которые затем трансплантируют в полость

бластоцисты (Gardner, 1978). Этот метод и его решающие преи-

мущества в плане генетического моделирования подробно

рассмотрены в разделе 8.4.

Как правило, иньецированная ДНК при встраивании в хро-

мосому образует блок из множества тандемно расположенных ко-

пий, при этом число единиц повтора в блоке у разных

особей может варьировать от единицы до нескольких сотен.

После интеграции введенной ДНК в хромосому различные генети-

ческие конструкции устойчивы и стабильно передаются по-

томству в соответствии с законами Менделя. Встраивание вве-

денной ДНК в функционально значимые области генома может

приводить к их дестабилизации и сопровождаться появлением

мутаций, спектр которых очень разнообразен. Таким образом,

животные, полученные при введении одного и того же гена, бу-

дут различаться как по сайтам интеграции, так и по количест-

ву копий встроенной чужеродной ДНК, а в некоторых случаях,

по уровню мутабильности и по типам индуцированных мутаций.

Таким образом, каждое трансгенное животное в этом смысле

уникально.

Трансгенные животные являются черезвычайно удобным обь-

ектом для анализа роли отдельных элементов гена в регуляции

его работы. Так, сопоставление характера экспрессии введен-

ного гена у животных, различающихся по длине фланнкирующих

последовательностей иньецированной ДНК, дает возможность об-

наружить элементы гена, контролирующие его работу в разных

типах тканей. Для облегчения анализа регуляторных последова-

тельностей гена часто вводят генетические конструкции, соче-

тающие эти элементы с геном-репортером, экспрессия которого

выражается в появлении известной и легко определяемой фер-

ментативной активности. Использование для трансгеноза реком-

бинантных молекул ДНК, представляющих собой различные комби-

нации регуляторных элементов и кодирующих последовательнос-

тей, ведет к более глубокому пониманию молекулярных механиз-

мов активации генов в разных типах тканей.

Как уже указывалось, случайный характер интеграции чуже-

родной ДНК нередко индуцирует мутации и нарушает экспрессию

нормальных генов реципиента. В ряде случаев наблюдаемые отк-

лонения в развитии оказываются аналогичными или сходными с

уже известными наследственными нарушениями у человека и по-

добные животные также могут использоваться в качестве гене-

тических моделей заболеваний. Этот подход был применен для

получения моделей таких заболеваний, в патогенезе которых

решающую роль играет эффект дозы генов. В частности, путем

трансфекции зиготы мышей генами бета-глобина, коллагена, ре-

нина, антигенов гистосовместимости удалось получить биологи-

ческие модели таких заболеваний, как бета-талассемия, несо-

вершенный остеогенез, гипертония и диабет, соответственно

(Erickson, 1988). Во всех перечисленных случаях введение до-

полнительной дозы экспрессирующего гена приводило к наруше-

нию балланса белковых генопродуктов в клетках и, как следс-

твие этого, было причиной патологических процессов.