Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Книга по генетике.DOC
Скачиваний:
280
Добавлен:
29.05.2014
Размер:
1.74 Mб
Скачать

Глава VI.

ЭКСПЕРИМЕНТАЛЬНЫЙ АНАЛИЗ ЭКСПРЕССИИ ГЕНОВ.

Раздел 6.1 Дифференциальная активность генов, выбор

адекватных биологических моделей.

Молекулярная идентификация гена, нарушение работы кото-

рого приводит к развитию наследственного заболевания, созда-

ет предпосылки для дальнейшего более подробного анализа ге-

нетических и биохимических основ патогенеза и разработки на

этой базе наиболее эффективных методов лечения. Начальные

этапы решения поставленной задачи включают в себя иссследо-

вание механизмов тканеспецифической экспрессии и регуляции

активности генов в нормальных клетках, оценку клинического

выражения различных типов нарушений гена, выявление первич-

ного биохимического дефекта, а также сопоставление молеку-

лярных основ работы генов в нормальных и мутантных клетках.

Естественно, что в различных тканях организма

экспрессируется не все, а лишь определенные группы генов.

Исключение составляют лишь так называемые гены домашнего хо-

зяйства (house-keeping genes), генопродукты которых обеспе-

чивают жизнедеятельность всех типов клеток (см.Главу II). По

весьма ориентировочным оценкам в тканях млекопитающих и че-

ловека работают в среднем около 2-3% всех генов, в клетках

печени - основной биохимической лаборатории организма - око-

ло 5%, тогда как в клетках мозга - примерно 9-10% (Корочкин,

1977). Это означает, что в различных соматических клетках

эукариот транскрибируется от 5 до 20 тысяч генов (Льюин,

1987). Значительная часть контролируемых ими белков необхо-

дима для обеспечения жизнедеятельности самих клеток. В про-

цессе онтогенеза и клеточной дифференцировки в разных тканях

организма происходит избирательная активация многих других

специфических генов, что, в конечном итоге, обусловливает

значительные межклеточные различия в наборе белков и в ско-

рости их синтеза.

Контроль генной активности осуществляется за счет диф-

ференциальной транскрипции и процессинга РНК в клеточных яд-

рах, различной стабильности мРНК в цитоплазме, избирательной

трансляции мРНК. Дифференциальная экспрессия генов, конечным

результатом которой является синтез функционально активного

белка, предполагает не только адекватную регуляцию генной

активности, но и полноценность всех последующих этапов,

включая сам белковый продукт, его устойчивость, способность

к посттрансляционным модификациям, правильную локализации и

корректное взаимодействие с другими компонентами клетки. Ре-

шающее значение для успешного анализа всего этого сложного

комплекса имеет выбор адекватных биологических моделей, по-

иск и целенаправленное конструирование которых представляет

вполне самостоятельную научную задачу.

Наиболее доступными модельными системами для анализа

экспрессии генов in vitro являются культуры клеток. Для кло-

нирования, генноинженерного манипулирования, направленного

введения сайт специфических мутаций, получения большого ко-

личества клонированных последовательностей ДНК, специфи-

ческих молекул мРНК, а также белкового продукта гена обычно

используют генетически хорошо изученные прокариотические

системы (Хеймс, Хиггинс, 1987). Для исследования процессов

трансляции, посттрансляционных модификаций белка, его внут-

риклеточной локализации и функционирования чаще используют

культуры клеток эукариот и, в частности, специфические куль-

туры клеток человека. Особая роль в изучении начальных эта-

пов развития патологического процесса, обусловленного

присутствием генных мутаций, а также в разработке терапевти-

ческих методов, включая генноинженерную коррекцию метаболи-

ческого дефекта, принадлежит культурам мутантных клеток. Это

могут быть первичные или перевиваемые культуры клеток, полу-

ченные из специфических тканей больного человека, либо выде-

ленные из тканей линейных животных, служащих генетической

моделью наследственного заболевания.

Идентификация гомологичных генов у экспериментальных

животных во многих случаях значительно облегчает и ускоряют

исследование функциональной активности нормальных и мутант-

ных генов человека. Большая роль в изучении молекулярных ме-

ханизмов развития патологических процессов in vivo принадле-

жит генетическим линиям животных. Это могут быть линии, по-

лученные в результате отбора спонтанно возникших или индуци-

рованных мутаций, а также искусственно сконструированные мо-

дели на базе трансгенных животных, в геном которых введен

чужеродный ген или фрагмент ДНК. Рассмотрим основные экспе-

риментальные подходы, используемые для анализа экспрессии

генов.