- •Часть 2
- •Тренировочные задания и их решение Тесты
- •От авторов
- •Технологический прогресс – основа развития современного общества
- •1.1. Сущность технологического прогресса.
- •1.2. Особенности технологического развития общества в современных условиях.
- •Основные направления и перспективы научно-технологического развития
- •Экологические проблемы технологического прогресса. Основы безотходной технологии.
- •Вопросы для повторения
- •Толковый словарь
- •Литература
- •2. Прогрессивные технологии автоматизации и информатизации производства.
- •2.1. Основы гибкой автоматизированной технологии
- •2.2 Основы робототехники и роботизации промышленного производства
- •2.3 Основы роторной технологии обработки изделий
- •2.4 Основы информационной технологии в управленческой и проектно-конструкторской деятельности
- •2.5 Общие сведения о программном управлении и его системах.
- •Вопросы для повторения
- •Толковый словарь
- •Литература
- •3. Прогрессивные технологии производства и обработки новых конструкционных материалов и изделий
- •3.2 Основы технологии порошковой металлургии
- •3.3 Электрофизические и электрохимические методы обработки
- •3.4 Основы лазерной технологии
- •3.5 Основы ультразвуковой технологии
- •3.6 Основы плазменной технологии
- •3.7 Основы мембранной технологии
- •3.8 Основы радиационно-химической технологии
- •Вопросы для повторения
- •Литература
2.3 Основы роторной технологии обработки изделий
Как отмечалось ранее, высшей формой автоматизации технологических процессов является комплексная автоматизация производства.
Наилучшие возможности такой автоматизации обеспечивают технологические машины, у которых:
во-первых, высокая степень концентрации технологических операций за счёт многопозиционной и малоинструментальной обработки, совмещённой во времени, что формирует высокий технологический потенциал производительности;
во-вторых, непрерывное транспортирование обрабатываемых объектов, совмещённое с их технологической обработкой. Это позволяет реализовать высокую производительность машины при благоприятных режимах её работы и сформировать непрерывные потоки обрабатываемых объектов, энергии и информации внутри машины.
Принципиальные возможности такого осуществления технологических процессов обеспечивает роторная технология обработки.
В общем случае технологический процесс получения любого сложного изделия включает в себя, как правило, разнообразные по сущности и продолжительности процессы. Поэтому при комплексной автоматизации производства с использованием традиционного оборудования на разных стадиях технологического процесса изготовления изделия приходится применять разное количество станков, при этом на вспомогательных процессах нужны многочисленные устройства, которые должны ещё и синхронно работать.
Добиться одинаковой производительности на разных по характеру и длительности технологических процессах изготовления сложного изделия без значительного усложнения оборудования позволяет роторная технология.
Слово “ротор” происходит от латинского “roto” - “вращаюсь”. Это название точно передаёт сущность процесса обработки по данной технологии.
В роторной машине основным элементом является технологический ротор с инструментальными блоками. При вращении технологического ротора вокруг оси происходит непрерывная обработка деталей, подаваемых на обработку другим транспортным ротором (рис. 2.2). Таким образом, инструментальные блоки, расположенные на технологическом роторе, совершают непрерывное движение по замкнутой траектории, при этом технологическая обработка деталей происходит в процессе их совместного перемещения с инструментальными блоками.
Основным элементом технологического ротора, в котором непосредственно осуществляется обработка деталей, является инструментальный блок. Он состоит из корпуса, в котором размещается комплект инструментов, который может осуществлять какую-либо операцию над деталью, подаваемой на обработку. Инструментальный блок снабжён устройствами приёма и выдачи обрабатываемой детали. Таким образом, инструментальный блок представляет собой автономный комплекс “деталь - инструмент - приспособление”, полностью определяющий точность и качество обработки на данной операции и который в случае необходимости можно быстро заменить.
Транспортный ротор обеспечивает передачу обрабатываемых деталей в инструментальные блоки, съём обработанных изделий и передачу на другие технологические роторы. Транспортные роторы с технологическими образуют жёсткую кинематическую цепь с общим приводом, обеспечивающим синхронное вращение роторов.
Производительность роторной машины и синхронность её отдельных элементов может быть обеспечена оптимальным сочетанием как числа оборотов ротора, так и числа инструментов в роторе при одинаковом шаговом расстоянии между инструментами в машине независимо от числа инструментов. Эта конструктивная особенность и создаёт необходимые технические предпосылки для объединения различных роторных машин в автоматические поточные линии.
Таким образом, в роторной машине технологические процессы максимально разделяются на операции, которые выполняются на соответствующих технологических роторах. При этом все рабочие и холостые ходы инструментов, исполнительных органов, вспомогательных механизмов, необходимые для выполнения определённой операции, а также подача и съём обработанной детали производятся в одном технологическом роторе.
Рис. 2.2. Принципиальная схема роторной машины
1 - технологический ротор;
2 - транспортный ротор
Дальнейшим развитием роторной технологии явилось создание роторно-конвейерных машин и линий (рис. 2.3). В отличие от роторных машин, в них отдельные операции выполняются в так называемых обслуживающих роторах. Для этого инструментальные блоки монтируют в гнёздах гибкого цепного конвейера, который на определённых участках огибает обслуживающие роторы.
Р
ис.
2.3. Принципиальная схема роторно-конвейерной
линии
1 - ротор загрузки; 2 - ротор сборки; 3 - технологический ротор обработки; 4 - ротор контроля качества обработки; 5 - гибкий цепной конвейер
Использование роторно-конвейерных машин и роторно-конвейерных линий имеет ряд преимуществ:
высокая производительность процесса обработки;
непрерывность обработки и транспортирования деталей, совмещение во времени этих процессов;
упрощение конструкции и обслуживания по сравнению с традиционными автоматическими линиями и роторными машинами;
возможность автоматизации контроля качества обработки каждой детали на контролирующих роторах;
возможность автоматизированного обслуживания рабочих инструментов (чистки, смазки, заточки, замены и т.д.).
Таким образом, в роторно-конвейерных машинах и линиях наиболее развиты основные принципы организации поточного автоматизированного производства: разделение технологического процесса обработки, концентрация операций, непрерывность и совмещение во времени процессов транспортирования и обработки.
Конструктивные особенности роторных и роторно-конвейерных линий позволяют эффективно объединять и одновременно выполнять технологические операции различных классов. Например, формообразование обработкой давлением с термической обработкой, травлением и контрольными операциями. При этом организуется непрерывный поток обрабатываемых объектов при минимальном числе автоматических линий, что также повышает экономическую эффективность автоматизации производства.
Расчёты показывают, что переход к полностью автоматизированным производствам, созданным на основе роторной технологии, позволит повысить производительность труда в десятки раз по сравнению с отдельно работающими станками, сократит транспортные перемещения деталей и заготовок в 5-10 раз, длительность обработки - в десятки раз при невысоких капитальных затратах и энергоёмкости производства, при высокой надёжности работы.
Высокая производительность роторной технологии делает её незаменимой при комплексной автоматизации прежде всего массового производства.
К сожалению, невысокая степень гибкости роторных и роторно-конвейерных линий, необходимость остановки для переналадки при переходе на выпуск новой продукции ставит определённые ограничения использования роторной технологии в серийном производстве. Для устранения этого недостатка в настоящее время разрабатываются конструкции многономенклатурных роторных и роторно-конвейерных линий, которые осуществляют одновременное изготовление номенклатуры нескольких изделий и в которых полностью устраняются переналадки.
Наибольшее применение роторная технология нашла в машиностроении. Именно здесь родились и были отработаны многие типовые конструктивные решения технологических роторов для различных операций, определившие в дальнейшем возможность распространения роторных линий в других отраслях производства. Это, в свою очередь, позволило создать унифицированную серию роторов конкретного целевого технологического назначения, различающихся между собой лишь числом подвижных элементов в каждом рабочем органе ротора.
В процессах обработки материалов резанием рабочий инструмент компонуется в автономные инструментальные блоки, при этом роторам по силам операции сверления, фрезерования, строгания и т.д.
В общей структуре машиностроительного производства большое место занимают термические и химические процессы, связанные с изменением физико-химических свойств обрабатываемых материалов. Роторы для таких процессов отличаются большим числом рабочих позиций и минимальным шагом между ними. Например, в роторных линиях для термической обработки используется эффективный метод нагрева токами высокой частоты.
Перспективно внедрение роторно-конвейерных линий и в других отраслях промышленности. Так разработаны линии для изготовления деталей из полимерных материалов: термопластов (полиэтилена, полипропилена, полистирола и т.д.) и термореактивных пластмасс (фенопластов, аминопластов и т.д.). При этом при изготовлении деталей из термопластов используется метод литья под давлением, а для изготовления деталей из термореактивных пластмасс - метод горячего прессования. Конструктивные особенности линий позволяют быстрый переход на другую номенклатуру изделий при смене пресс-форм. Производительность некоторых линий доходит до 1000 шт/мин при низкой энергоёмкости и малых габаритах.
На основе роторных линий разработаны различные типоразмеры оборудования для изготовления деталей из металлопластмассовых деталей и композиционных материалов методом горячего прессования.
Созданы роторные и роторно-конвейерные линии для пищевой промышленности, сельского хозяйства, предприятий общественного питания.
В пищевой промышленности эти линии нашли широкое применение для разлива различных жидкостей: молока, соков, лимонада, а также упаковки пищевых продуктов.
Большие перспективы открывает применение роторно-конвейерных машин и линий для непосредственного приготовления продуктов питания. Уже есть работающие линии по изготовлению сосисок, изготовлению и замораживанию пельменей, для выпечки оладий.
Большие успехи в применении роторных автоматов достигнуты при производстве фармацевтических таблеток, прессованных пищевых концентратов, различных кондитерских изделий. Создано автоматизированное производство с использованием роторно-конвейерного принципа для разделки бройлеров. Обслуживающий персонал осуществляет только подвешивание бройлеров на специальный конвейер, а дальше весь процесс разделки происходит автоматически с использованием роторных машин.
Если говорить о перспективах роторной технологии обработки изделий, то необходимо отметить следующее.
Роторная технология является реальным, действенным средством комплексной автоматизации производства, при чём она создаёт все необходимые условия и для автоматизации вспомогательных работ. Комплексная автоматизация производств на основе роторных и роторно-конвейерных линий позволяет в десятки раз повысить производительность труда, в сотни раз сократить длительность производственного цикла изготовления продукции, при этом капитальные вложения на создание таких производств окупаются в течение одного-двух лет.
Оснащение роторно-конвейерных линий информационными датчиками, регуляторами, программными устройствами, которые совместно с управляющим вычислительным комплексом на базе ЭВМ управляют ходом технологического процесса и производством в целом, позволит поднять на более высокую качественную ступень эффективность роторной технологии.
