
- •Передмова
- •Тематичний план
- •Тема № 1: центр ваги тіла.
- •1. Історія виникнення та становлення технічної механіки.
- •2. Загальні поняття статики.
- •2.1 Аксіоми статики
- •3. Момент сили.
- •4. Центр паралельних сил. Центр ваги тіла.
- •4.1 Рівнодіюча систем двох паралельних сил, які не утворюють пару
- •4.2 Центр паралельних сил
- •4.3 Центр ваги твердого тіла
- •Питання для самоконтролю
- •Тема № 2: закон гука. Випробування матеріалів.
- •1. Основні задачі опору матеріалів.
- •2. Поняття про деформацію. Основні допущення та гіпотези.
- •3. Види деформації.
- •3 .1 Деформація розтягання-стискання
- •3 .2 Деформація зсуву (зрізу)
- •3.3 Деформація кручення
- •3.4 Деформація згинання
- •Питання для самоконтролю
- •Тема № 3. Згин.
- •1. Загальні поняття.
- •2. Внутрішні силові фактори при згині.
- •3. Нормальні напруження при згині.
- •Питання для самоконтролю
- •Тема № 4. З’єднання деталей.
- •1. Основні поняття та визначення, класифікація машин.
- •2. Кінематичні пари та ланцюги.
- •1. Класифікація з’єднання деталей.
- •2. Рухомі з’єднання.
- •3. Нерухомі роз’ємні з’єднання.
- •3.1 Різьбові з’єднання.
- •3.2 Штифтове з’єднання
- •3.3 Шпонкове з’єднання
- •3.4 Шпільцове з’єднання
- •4. Нерухомі нероз’ємні з’єднання.
- •4.1 Заклепкове з’єднання
- •4.2 Зварювання деталей
- •4.4 Склеювання.
- •1. Підготовка поверхонь під склеювання.
- •2. Спосіб нанесення клею.
- •3. Твердіння клею.
- •4.5 Паяння
- •4.6 Пресове з’єднання
- •Питання для самоконтролю
- •Тема № 5: передачі обертового руху.
- •1. Класифікація передач обертового руху.
- •2. Передаточне (передавальне) число.
- •3. Фрикційна передача.
- •1. Загальна характеристика зубчастих передач.
- •2. Матеріали для виготовлення зубчастих передач.
- •1. Загальна характеристика зубчастих колес.
- •2. Циліндричні зубчасті колеса.
- •3. Конічні зубчасті колеса.
- •4. Рейкова передача (Кремальера).
- •1. Загальна характеристика черв’ячної передачі.
- •Переваги:
- •Недоліки:
- •2. Матеріали для виготовлення черв’ячної передачі.
- •1. Загальна характеристика пасових передач.
- •2. Класифікація пасових передач.
- •3. Розрахунок пасових передач.
- •Геометричні характеристики
- •Кінематичні характеристики
- •Силові характеристики
- •1. Кулачковий механізм.
- •2. Мальтійський механізм.
- •3. Храповий механізм.
- •Питання для самоконтролю
- •Тема № 6: вали, осі, підшипники та муфти.
- •1. Загальна характеристика осі.
- •2. Загальна характеристика валів.
- •3. Матеріали для виготовлення валів.
- •1. Загальна характеристика підшипників (вальниць).
- •2. Підшипник (вальниці) ковзання.
- •3. Підшипники (вальниці) кочення.
- •Приклади вальниць кочення подані у таблиці 13.1.
- •Вальниці кочення
- •4. Загальна характеристика муфт.
- •Питання для самоконтролю
- •Перелік питань до заліку
- •Рекомендована література
Питання для самоконтролю
Якими параметрами визначається сила, що діє на тверде тіло?
Що таке лінія дії сили?
Що називають проекцією сили на координатну вісь?
Які системи сил називають еквівалентними?
Яку силу називають рівнодіючою системи сил?
Чи може рівнодіюча двох сил бути за модулем менше, ніж модуль складових її сил?
Дайте визначення векторного моменту сили відносно довільного просторового центра і наведіть відповідну формулу.
Що таке центр ваги тіла? Чи змінюється положення центра ваги відносно точок тіла при переміщенні тіла в просторі?
Тема № 2: закон гука. Випробування матеріалів.
Лекція 2.Опір матеріалів.
План:
1. Основні задачі опору матеріалів.
2. Поняття про деформацію. Основні допущення та гіпотези.
3. Види деформації.
1. Основні задачі опору матеріалів.
Опір матеріалів – це наука про інженерні методи розрахунку на міцність, жорсткість і стійкість елементів конструкцій, деталей машин і приладів.
Міцність – це здатність тіл протидіяти зовнішнім силам, не руйнуючись.
Жорсткість – це здатність тіл протидіяти зовнішнім силам, якомога менше деформуючись.
Стійкість – це здатність тіл протидіяти зовнішнім силам, зберігаючи первісну форму пружної рівноваги.
Опір матеріалів вивчає поведінку тіл у полі зовнішніх сил. Але ж цим займається і теоретична механіка. Але в теоретичній механіці всі тіла вважають абсолютно твердими і розглядають закономірності руху цих тіл, то в задачах опору матеріалів усі тіла вважають твердими, але здатними до деформацій, і розглядають процеси, пов’язані з цими деформаціями, а рух цих тіл цікавить тільки з точки зору утворення додаткових сил (наприклад, сил інерції).
Конструкція – це сукупність елементів (тіл), які функціонально пов’язані між собою та виконують певне технічне завдання. Тіло, в свою чергу, теж може виступати в ролі конструкції, якщо, наприклад, у постановці задачі потрібно враховувати неоднорідну побудову (композитні матеріали).
Опір матеріалів є наукою інженерних методів розрахунку саме тому, що постановка задач передбачає рівень абстрагування та спрощення таким, щоб інженер-практик міг розв’язати ці задачі, використовуючи доступний для нього математичний апарат. Таким чином, опір матеріалів – це загальна наука про міцність і надійність конструкцій та їх елементів.
При вирішенні основної задачі опору матеріалів − вибору матеріалу й поперечних розмірів для елементів споруд і машин, крім уміння обчислювати напруження, необхідне знання механічних властивостей реальних матеріалів. Це зумовлює необхідність лабораторних експериментальних досліджень. Глибокі знання про міцність матеріалів, що використовуються, і не менш глибоке і чітке уявлення про розподіл напружень в елементах конструкцій − ось що повинен дати курс опору матеріалів, аби достатньо озброїти спеціаліста для вирішення практичних задач.
Для побудови теорії опору матеріалів вводять деякі гіпотези щодо структури і властивостей матеріалів, а також про характер деформацій.
Гіпотеза про однорідність та ізотропність. Матеріал вважається однорідним та ізотропним, тобто в будь-якому об'ємі та в будь-якому напрямі властивості матеріалу вважаються однаковими.
Гіпотеза про суцільність матеріалу. Припускається, що матеріал суцільно заповнює форму тіла.
Гіпотеза про малість деформацій. Припускається, що деформації малі, порівняно з розмірами тіла. Це дає змогу здебільшого нехтувати змінами в розташуванні зовнішніх сил відносно окремих частин тіла й складати рівняння статики для недеформованого стану тіла. Малі відносні деформації розглядаються як нескінченно малі величини.
Гіпотеза про ідеальну пружність матеріалу. Припускається, що всі тіла абсолютно пружні. Відхилення від ідеальної пружності, які завжди спостерігаються для реальних тіл, неістотні і ними нехтують до певних меж деформування. Більшість задач опору матеріалів вирішують у припущенні лінійно деформованого тіла, при якому справедливий закон Гука, що відображає пряму пропорційність між деформаціями та навантаженням.
Гіпотеза Бернуллі про плоскі перерізи. Поперечні перерізи, що були плоскими і нормальними до осі стержня до прикладання навантаження, залишаються плоскими і нормальними до його осі після деформації.
Принципи:
Принцип незалежності й додавання дії сил (принцип суперпозиції). Зусилля в будь-якому елементі конструкції, спричинені різними факторами, дорівнюють сумі зусиль, спричинені кожним із цих факторів, і не залежать від порядку їхнього прикладання. Це справедливо і стосовно деформацій.
Принцип Сен-Венана. В перерізах, достатньо віддалених від місць прикладання навантаження, деформація тіла не залежить від конкретного способу навантаження і визначається лише статичним еквівалентом навантаження.