
- •Москва – 2011г.
- •Содержание
- •2.Место дисциплины в структуре ооп:
- •3. Требования к результатам освоения дисциплины:
- •4.2. Содержание разделов и тем
- •Тема 1. Предмет и значение логики
- •Тема 2. Язык логики
- •Тема 3.Основные законы логики
- •Тема 4. Понятие как форма мышления
- •Тема 5. Суждение
- •Тема 6. Умозаключение
- •Тема 7. Логические основы теории аргументации
- •4.4.Содержание разделов и тем
- •Тема 1. Предмет и значение логики
- •Тема 2. Язык логики
- •Тема 3.Основные законы логики
- •Тема 4. Понятие как форма мышления
- •Тема 5. Суждение
- •Тема 6. Умозаключение
- •Тема 7. Логические основы теории аргументации
- •Разделы дисциплины и виды занятий
- •Содержание разделов и тем
- •Тема 1. Предмет и значение логики
- •Тема 2. Язык логики
- •Тема 3.Основные законы логики
- •Тема 4. Понятие как форма мышления
- •Тема 5. Суждение
- •Тема 6. Умозаключение
- •Тема 7. Логические основы теории аргументации
- •Разделы дисциплины и виды занятий
- •5. Планы практических занятий Семинар № 1. Предмет и назначение логики Вопросы для обсуждения:
- •Темы рефератов и докладов
- •Семинар № 2. Языки логики Вопросы для обсуждения:
- •Семинар № 3. Основные законы логики Вопросы для обсуждения:
- •Темы рефератов и докладов
- •Семинар № 4. Понятие как форма мышления Вопросы для обсуждения:
- •Темы рефератов и докладов
- •Упражнения и задачи
- •Семинар № 5. Суждение Вопросы для обсуждения:
- •Темы рефератов и докладов
- •Упражнения и задачи
- •Семинар № 6. Умозаключение Вопросы для обсуждения:
- •Темы рефератов и докладов
- •Упражнения и задачи
- •Семинар № 7. Логические основы теории аргументации Вопросы для обсуждения:
- •Темы рефератов и докладов
- •Упражнения и задачи
- •7.Методические рекомендации по организации изучения дисциплины
- •7.1. Методические рекомендации к контрольной работе
- •Основные требования к оформлению работы
- •7.2. Примерная тематика письменных контрольных работ
- •8. Контрольные вопросы к зачету по курсу
- •Учебно-научное и информационное обеспечение дисциплины
- •10.Материально-техническое обеспечение дисциплины
- •11. Тестовые задания по курсу Вариант №1
- •Всеобщая воинская обязанность - это закон.
- •12.Глоссарий
- •Эристика (от греч. Eristika — искусство спора) — искусство ведения спора.
- •Министерство образования и науки рф Московская государственная академия коммунального хозяйства и строительства
- •Контрольная работа
- •Тексты лекций к курсу учебной дисциплины «логика»
- •Тема 1. Предмет и значение логики
- •1.1.Понятие «логика», его основные значения. Место логики в системе наук о мышлении.
- •1.2.Роль мышления в познании.
- •Тема 2. Язык логики
- •2.1.Соотношение языка и мышления. Понятие о знаковых системах.
- •Тема 3. Основные законы логики
- •3.1. Понятие «логического закона»
- •3.2.Закон тождества и его логические требования к процессу мышления, а также ошибки из-за их нарушения
- •3.3. Закон непротиворечия, его конструктивная роль в логическом мышлении
- •3.4. Закон исключенного третьего и его значение для определения истинности
- •3.5. Закон достаточного основания и его значение для обоснованности мысли
- •Тема 4. Понятие как форма мышления
- •4.1.Общая характеристика понятия, его роль в процессе познания.
- •4.2.Содержание и объем понятий. Виды понятий
- •4.3. Логические отношения между понятиями
- •4.4. Определение понятий, правила и ошибки
- •4.7. Деление объема понятия, правила и ошибки
- •Определение, его виды
- •Тема 5. Суждение
- •5.1.Определение, общая характеристика и роль суждения в познании. Простые и сложные суждения
- •5.2. Отношения между простыми суждениями
- •5.3.Логические операции с суждениями (преобразование суждений, отрицание суждений)
- •Тема 6. Умозаключение
- •6.1. Общее представление об умозаключении
- •Виды умозаключений
- •6.2. Дедуктивные и индуктивные умозаключения
- •6.3. Понятие правила вывода
- •6.4. Выводы из категорических суждений посредством их преобразования
- •6.4.3. Противопоставление предикату
- •6.5. Простой категорический силлогизм. Фигуры категорического силлогизма. Особые правила фигур
- •6.5.1. Модусы категорического силлогизма
- •6.5.2. Правила категорического силлогизма
- •II. Правила посылок.
- •6.6. Сокращенный категорический силлогизм (энтимема)
- •6.7. Сложные и сложносокращенные силлогизмы (полисиллогизмы, сориты, эпихейрема)
- •6.7.1. Сорит (с общими посылками)
- •6.7.2. Формализация эпихейрем с общими посылками
- •6.8. Условные умозаключения
- •6.8.1. Условно-категорические умозаключения
- •6.9. Разделительные умозаключения
- •6.9.1. Формализация дилеммы
- •6.9.2. Простая конструктивная дилемма
- •6.9.3. Сложная конструктивная дилемма
- •6.9.4. Простая деструктивная дилемма
- •6.9.5. Сложная деструктивная дилемма
- •6.9.6. Трилемма
- •6.9.7. Сокращенные условные, разделительные и условно-разделительные умозаключения
- •6.10. Непрямые (косвенные) выводы
- •6.11. Индуктивные умозаключения и их виды
- •6.11.1. Логическая природа индукции
- •Тема 7. Логические основы теории аргументации
- •7.1.Общая характеристика логического доказательства и опровержения
- •7.2 Виды доказательства
- •Основные правила логического доказательства и ошибки, возможные при их нарушении
- •1.4. Дискуссия и полемика
6.11. Индуктивные умозаключения и их виды
6.11.1. Логическая природа индукции
Дедуктивные умозаключения позволяют выводить из истинных посылок при соблюдении соответствующих правил истинные заключения. Индуктивные умозаключения обычно дают нам не достоверные, а лишь правдоподобные
заключения.
В определении индукции в логике выявляются два подхода.
1. В традиционной (не в математической) логике индукцией называется умозаключение от знания меньшей степени общности к новому знанию большей степени общности (т. е. от отдельных частных случаев мы переходим к общему
суждению).
2. В современной математической логике индукцией называют умозак лючение, дающее вероятное суждение.
Общее в природе и обществе не существует самостоятельно, до и вне отдельного, а отдельное не существует без общего; общее существует в отдельном, через отдельное, т. е. проявляется в конкретных предметах. Поэтому общее, существенное, повторяющееся и закономерное в предметах познается через изучение отдельного, и одним из средств познания общего выступает индукция. В зависимости от избранного основания выделяют индукцию полную и неполную. По другому основанию выделяют математическую индукцию.
Полной индукцией называется такое умозаключение, в котором общее заключение о всех элементах класса предметов делается на основании рассмотрения каждого элемента этого класса. Заключение может быть сделано из единичных суждений, как это видно из приведенного ниже умозаключения. Явление, о котором пойдет речь, образно называют "парадом" планет. Один раз в 179 лет все планеты располагаются вместе по одну сторону от Солнца в секторе с углом примерно в 95°. В последний раз это явление наблюдалось в 1982 г.
Земля в 1982 г. была расположена вместе с другими планетами по одну сторону от Солнца в секторе с углом приблизительно в 95°.
Марс в 1982 г. был расположен вместе с другими планетами по одну сторону от Солнца в секторе с углом приблизительно 95°.
Меркурий в 1982 г. был расположен вместе с другими планетами по одну сторону от Солнца в секторе с углом приблизительно 95°.
Земля, Марс, Венера, Нептун, Плутон, Сатурн, Уран, Юпитер, Меркурий - планеты Солнечной системы.
Все планеты Солнечной системы в 1982 г. были расположены вместе по одну сторону от Солнца в секторе с углом приблизительно 95°.
Заключение по полной индукции может быть сделано не только из единичных, но и из общих суждений.
К полной индукции относится доказательство по случаям. Много примеров доказательства по случаям предоставляет математика, в том числе ее школьный курс.
Полная индукция дает достоверное заключение, поэтому она часто применяется в математических и в других строгих доказательствах. Чтобы использовать полную индукцию, надо выполнить следующие условия:
1.Точно знать число предметов или явлений, подлежащих рассмотрению.
2.Убедиться, что признак принадлежит каждому элементу этого класса.
Тема 7. Логические основы теории аргументации
Общая характеристика логического доказательства и опровержения. Логическая структура доказательства. Виды доказательства. Основные правила логического доказательства и ошибки, возможные при их нарушении. Понятие о софизмах и логических парадоксах. Спор, дискуссия, полемика, диспут как сочетание доказательства, критики и опровержения. Общие требования к спору и дискуссии.