- •Вопрос 2. Спецификация, представление, реализация абстрактных типов данных.
- •Вопрос 3. Многомашинные вс. Реализация на основе ес эвм. Кластерные вс.
- •Типы кластеров:
- •Вопрос 2. Линейные структуры данных: стек, очередь, дек
- •Вопрос 3. Сравнительный анализ и основные компоненты инструментальных среды разработки пользовательских интерфейсов. Классификация элементов пользовательского интерфейса
- •Вопрос 1. Конкретные реализации языков функционального программирования: язык программирования Лисп, основные объекты, примитивы, списки, правила составления программ.
- •Вопрос 2. Семантическая теория программ. Вычислимость и разрешимость
- •Вопрос 3. Формальные методы описания диалоговых систем. Законы Фитса и Хика.
- •Вопрос 1. Основные конструкции логической программы: факты, правила, запросы, логические переменные. Операционная и декларативная семантика логических программ.
- •1. 5. Декларативный и процедурный смысл программ
- •Вопрос 2. Интерфейсы. Способы согласования аппаратных структур. Организация асинхронных интерфейсов
- •Элементы процесса как поведенческой категории :
- •Дескриптивный асинхронный процесс (dp)
- •Асинхронный процесс (ap)
- •Инициаторы
- •Вопрос 3. Эргономика пользовательского интерфейса. Критерии эргономичности интерфейса. Человеческие ошибки. Методы предотвращения ошибок. Снижение чувствительности системы к ошибкам.
- •Типы ошибок
- •Методы предотвращения ошибок
- •Как избежать сообщений об ошибках
- •Вопрос 1. Интерпретация и корректность логических программ. Абстрактный интерпретатор, значение логической программы, вычислительная модель
- •Вопрос 2. Порядковые статистики (Гулаков сказал что его не будет)
- •Субъективная удовлетворенность
- •Типичные интерфейсные ошибки отечественного по
- •Программа перегружена элементами управления
- •Терминология не адекватна знаниям пользователя о системе
- •От пользователя постоянно требуется дополнительная информация
- •Вопрос 1. Программирование баз данных. Динамическая база данных. Добавление и удаление фактов в процессе работы программы.
- •Вопрос 2. Поиск и кодирование (сжатие) данных, кодовые деревья, оптимальные префиксные коды
- •Вопрос 1. Рекурсивное программирование на логическом языке. Рекурсивные структуры данных – списки. Объявление списков. Составные списки. Голова и хвост списка. Примеры работы со списками.
- •Вопрос 2. Бинарный поиск, хеширование
- •Вопрос 3. Тестирование и отладка программного обеспечения. Структурное и функциональное тестирование. Особенности тестирования объектно-ориентированного по. Автоматизация процесса тестирования.
- •Вопрос1. Вычислительная модель программы на логическом языке. Согласование целевых утверждений. Сопоставление и унификация. Детерминизм.
- •Вопрос 2. Понятие выполнения сети. Свойства сети (устойчивость, безопасность, консервативность).
- •Вопрос 3. Автоматизация проектирования программного обеспечения на базе case-технологий. Принципы построения и т.Д.
- •Вопрос 1. Множественные выражения Программирование второго порядка Недетерминированное программирование
- •Вопрос 2. Нелинейные структуры данных: иерархические списки, деревья и леса, бинарные деревья
- •Вопрос 1. Вне логические предикаты. Ввод-вывод. Доступ к программам и обработка программ. Металогические предикаты. Сравнение не основных термов.
- •Вопрос 2. Алгоритмы сортировки
- •Сортировка разделением (Quicksort)
- •Вопрос 1. Constraint–Пролог: операционная семантика обобщение механизма унификации, понятие constraint'а. Операционная модель Constraint-пролоГа.
- •Вопрос 2. Нелинейные структуры: обходы деревьев
- •Вопрос 3. Качество по. Критерии качества: сложность, корректность, надежность, трудоемкость. Методика оценки качества по. Метрические особенности объектно-ориентированных пс. Сертификация по
- •Вопрос 1. Cancelled мистером г.
- •Вопрос 2. Стандартные схемы программ. Методы формальной спецификации и верификации.
- •Вопрос 1. Использование деревьев в задачах поиска: бинарные деревья поиска, случайные, оптимальные, сбалансированные по высоте и рандомизированные деревья поиска
- •. Деревья цифрового поиска
- •Вопрос 2. Определение асинхронного процесса как описания модели вычислительного процесса. Глобальные свойства – асинхронность, недетерминированность, параллельность.
- •1. Задачи сортировки; внутренняя и внешняя сортировка
- •2. Подклассы асинхронного процесса. Эффективный асинхронный процесс
- •Длительность реакции системы
- •Субъективное восприятие скорости работы
- •Приемы для уменьшения субъективного восприятия
- •1. Оптимальная сортировка.
- •2. Конвейерный процесс. Автономный процесс. Асинхронный процесс как метамодель.
- •Непосредственное манипулирование
- •Потеря фокуса внимания (прерывание)
- •Ограничение принятия решений
- •1. Анализ сложности и эффективности алгоритмов поиска и сортировки.
- •2. Классификация сетей (ординарные, автоматные, маркированный граф).
- •Понятность системы
- •Ментальная модель
- •Метафора
- •Аффорданс
- •Стандарт
- •1. Файлы: организация и обработка, представление деревьями: b-деревья.
- •2. Сетевое представление параллельных процессов. Области применения сетей Петри
- •3. Основы теории формальных языков и грамматик. Основные понятия и определения. Операции над языками. Классификация формальных языков и грамматик по порождающей способности
- •1. Алгоритмы на графах: представления графов, схемы поиска в глубину и ширину, минимальное остовное дерево, кратчайшие пути.
- •2.1.Поиск в глубину
- •2.2 Поиск в ширину.
- •2. Протоколы взаимодействия объектов вычислительных структур. Понятие протокола.
- •3. Вывод контекстно-свободных (кс) – грамматик и правила построения дерева вывода. Синтаксический разбор. Способы задания схем грамматик. Форма Бэкуса-Наура.
- •1. Теория сложности алгоритмов: np-сложные и труднорешаемые задачи.
- •2. Недетерминированные конечные автоматы. Конечные преобразователи и переводы. Преобразование некоторых грамматик к автоматному виду.
- •3. Объектно-ориентированное проектирование. Принципы проектирования. Схемы, диаграммы, инструменты.
- •1. Детерминированные конечные автоматы. Эквивалентные состояния и автоматы.
- •2. Синтаксический анализ. Метод оперативного предшествования. Восходящие и нисходящие методы синтаксического анализа.
- •2. Жизненный цикл программного обеспечения. Структура жизненного цикла согласно международного стандарта.
- •1. Нисходящие распознаватели. Ll(k) – грамматики. Построение детерминированного нисходящего распознавателя.
- •2. Параллельная обработка как основа высокопроизводительных вычислений. Уровни организации параллелизма: уровень заданий, программ и команд. Системы (языки) параллельного программирования.
- •1. Восходящие распознаватели. Lr(k) грамматики. Построение грамматики.
- •2. Понятие архитектуры вычислительной системы (вс). Архитектура как набор компонент и как система уровневых интерфейсов. Основные аппаратные и программные элементы вс.
- •1.1. Архитектура как набор взаимодействующих компонент
- •1.2. Архитектура как интерфейс между уровнями физической системы
- •1. Магазинные преобразователи. Определение магазинного преобразователя. Перевод, определяемый преобразователем.
- •2. Архитектура системы команд. Микропроцессоры (мп) с полным (cisc) и сокращённых (risc) набором команд. Основные принципы risc- архитектуры. Организация risc мп Alpha 21x64 фирмы dec.
- •Особенности архитектуры Alpha компании dec
- •1. Описание перевода или трансляции. Синтаксически-управляемые (су) – схемы.
- •2. Основные идеи объектно-ориентированных языков программирования. Создание абстрактных типов данных. Инкапсуляция. Полиморфизм. Наследование.
- •3. Развитие архитектур современных мп. Конвейеризация и динамическое выполнение потока команд. Суперскалярность. Архитектура epic мп Intel itanium.
- •1. Транслирующие грамматики. Построение транслирующей грамматики по су-схеме. Атрибутные транслирующие грамматики.
- •3. Векторные и векторно-конвейерные вс. Структура векторного процессора. Матричные вс.
- •1. Трансляторы, интерпретаторы и компиляторы. Стадии работы компиляторы. Лексический анализ.
- •3. Системы массовой параллельной обработки (мрр). Супер эвм фирмы sgi - Cray t3e(t3d) -1200.
- •2. Классификация и типы вс. Многомашинные и многопроцессорные вс. Представление вс на основе распределения потоков команд и данных (классификация Флинна)
Элементы процесса как поведенческой категории :
Состояние – статистический элемент структуры или системы. Представляет собой некоторое упорядоченное множество значений, компонент, параметров или характеристик системы.
Действие – переход от одного состояния к другому.
Асинхронность – отсутствие ограничения на относительных – длительность, состояние и действие, т.е. длительность-состояние и длительность-действие имеют конечную продолжительность.
Согласованность – свойство, отражающее причинно-следственную связь между состояниями. Переход из одного состояния в другое происходит только после окончания первого.
Событие – мгновенное действие, которое в рассматриваемой нами модели не имеет продолжительности.
Ситуация – сочетание условий и обстоятельств, создающих определенную обстановку.
Асинхронный процесс используется как для задания наиболее компактного описания системы, так и для решения задач анализа и реализации системы.
Будем рассматривать 2 вида асинхронных процессов при моделировании :
Дескриптивный асинхронный процесс (dp)
DP – четверка <S, F, J, R>, в которой:
Билет 4
S – не пустое множество ситуаций;
F – бинарное отношение, определенное на множестве P(S) подмножеств ситуаций, которое некоторому подмножеству ситуаций αP(S) ставит в соответствие подмножество βP(S) такое, что α ≠ β;
J – множество инициаторов, входящих в множество P(S) ( P(S)), таких что:
i J , что iF
Если iF, где J, т.е. F следует, что J
Для i J не , причем J, такого что Fi
R – множество результантов, причем R P(S):
r R, если rF, то R
r R , что Fr
Асинхронный процесс (ap)
Эта модель ориентирована в основном на анализ свойств системы и решение вопросов ее аппаратной реализации.
Уточнение: асинхронность в этой модели подчеркивает, что категория времени формально не фигурирует в определении. Привязка к сущности времени осуществляется с помощью отношения F, т.е. если F, то время перехода из подмножества ситуаций в подмножество ситуаций не определено, но конечно.
Введение отношения F может пониматься как отношение следования и представляет собой логическую необходимость.
F:
- подмножество (совокупность) причин;
- совокупность следствий.
Инициаторы
Инициаторы – подмножество ситуаций, инициирующих процесс. Назначение инициаторов делается на основе семантики процессов. Введенное ограничение на их выбор говорит лишь о том, что инициатор не может быть только следствием некоторого подмножества ситуаций, он обязательно должен быть причиной.
Результанты – подмножества, состоящие из финальных ситуаций. Их выбор осуществляется на основе семантики процессов. Результанты не могут быть только причиной, они должны быть и следствием какой-то причины.
Асинхронный процесс – четверка <S, E, I, R>, в которых:
S – непустое множество системы;
E – отношение непосредственного следствия ситуаций, определенная на множестве SS, т.е. E SS – бинарное (декартово) множество;
I – множество инициаторов, при этом I является подмножеством ситуаций S, т.е. I S, причем таких, где:
если iESK, где i I, SK I
R – множество результантов, R S, при этом r S, r R, то и S R.
