
- •Вопрос 2. Спецификация, представление, реализация абстрактных типов данных.
- •Вопрос 3. Многомашинные вс. Реализация на основе ес эвм. Кластерные вс.
- •Типы кластеров:
- •Вопрос 2. Линейные структуры данных: стек, очередь, дек
- •Вопрос 3. Сравнительный анализ и основные компоненты инструментальных среды разработки пользовательских интерфейсов. Классификация элементов пользовательского интерфейса
- •Вопрос 1. Конкретные реализации языков функционального программирования: язык программирования Лисп, основные объекты, примитивы, списки, правила составления программ.
- •Вопрос 2. Семантическая теория программ. Вычислимость и разрешимость
- •Вопрос 3. Формальные методы описания диалоговых систем. Законы Фитса и Хика.
- •Вопрос 1. Основные конструкции логической программы: факты, правила, запросы, логические переменные. Операционная и декларативная семантика логических программ.
- •1. 5. Декларативный и процедурный смысл программ
- •Вопрос 2. Интерфейсы. Способы согласования аппаратных структур. Организация асинхронных интерфейсов
- •Элементы процесса как поведенческой категории :
- •Дескриптивный асинхронный процесс (dp)
- •Асинхронный процесс (ap)
- •Инициаторы
- •Вопрос 3. Эргономика пользовательского интерфейса. Критерии эргономичности интерфейса. Человеческие ошибки. Методы предотвращения ошибок. Снижение чувствительности системы к ошибкам.
- •Типы ошибок
- •Методы предотвращения ошибок
- •Как избежать сообщений об ошибках
- •Вопрос 1. Интерпретация и корректность логических программ. Абстрактный интерпретатор, значение логической программы, вычислительная модель
- •Вопрос 2. Порядковые статистики (Гулаков сказал что его не будет)
- •Субъективная удовлетворенность
- •Типичные интерфейсные ошибки отечественного по
- •Программа перегружена элементами управления
- •Терминология не адекватна знаниям пользователя о системе
- •От пользователя постоянно требуется дополнительная информация
- •Вопрос 1. Программирование баз данных. Динамическая база данных. Добавление и удаление фактов в процессе работы программы.
- •Вопрос 2. Поиск и кодирование (сжатие) данных, кодовые деревья, оптимальные префиксные коды
- •Вопрос 1. Рекурсивное программирование на логическом языке. Рекурсивные структуры данных – списки. Объявление списков. Составные списки. Голова и хвост списка. Примеры работы со списками.
- •Вопрос 2. Бинарный поиск, хеширование
- •Вопрос 3. Тестирование и отладка программного обеспечения. Структурное и функциональное тестирование. Особенности тестирования объектно-ориентированного по. Автоматизация процесса тестирования.
- •Вопрос1. Вычислительная модель программы на логическом языке. Согласование целевых утверждений. Сопоставление и унификация. Детерминизм.
- •Вопрос 2. Понятие выполнения сети. Свойства сети (устойчивость, безопасность, консервативность).
- •Вопрос 3. Автоматизация проектирования программного обеспечения на базе case-технологий. Принципы построения и т.Д.
- •Вопрос 1. Множественные выражения Программирование второго порядка Недетерминированное программирование
- •Вопрос 2. Нелинейные структуры данных: иерархические списки, деревья и леса, бинарные деревья
- •Вопрос 1. Вне логические предикаты. Ввод-вывод. Доступ к программам и обработка программ. Металогические предикаты. Сравнение не основных термов.
- •Вопрос 2. Алгоритмы сортировки
- •Сортировка разделением (Quicksort)
- •Вопрос 1. Constraint–Пролог: операционная семантика обобщение механизма унификации, понятие constraint'а. Операционная модель Constraint-пролоГа.
- •Вопрос 2. Нелинейные структуры: обходы деревьев
- •Вопрос 3. Качество по. Критерии качества: сложность, корректность, надежность, трудоемкость. Методика оценки качества по. Метрические особенности объектно-ориентированных пс. Сертификация по
- •Вопрос 1. Cancelled мистером г.
- •Вопрос 2. Стандартные схемы программ. Методы формальной спецификации и верификации.
- •Вопрос 1. Использование деревьев в задачах поиска: бинарные деревья поиска, случайные, оптимальные, сбалансированные по высоте и рандомизированные деревья поиска
- •. Деревья цифрового поиска
- •Вопрос 2. Определение асинхронного процесса как описания модели вычислительного процесса. Глобальные свойства – асинхронность, недетерминированность, параллельность.
- •1. Задачи сортировки; внутренняя и внешняя сортировка
- •2. Подклассы асинхронного процесса. Эффективный асинхронный процесс
- •Длительность реакции системы
- •Субъективное восприятие скорости работы
- •Приемы для уменьшения субъективного восприятия
- •1. Оптимальная сортировка.
- •2. Конвейерный процесс. Автономный процесс. Асинхронный процесс как метамодель.
- •Непосредственное манипулирование
- •Потеря фокуса внимания (прерывание)
- •Ограничение принятия решений
- •1. Анализ сложности и эффективности алгоритмов поиска и сортировки.
- •2. Классификация сетей (ординарные, автоматные, маркированный граф).
- •Понятность системы
- •Ментальная модель
- •Метафора
- •Аффорданс
- •Стандарт
- •1. Файлы: организация и обработка, представление деревьями: b-деревья.
- •2. Сетевое представление параллельных процессов. Области применения сетей Петри
- •3. Основы теории формальных языков и грамматик. Основные понятия и определения. Операции над языками. Классификация формальных языков и грамматик по порождающей способности
- •1. Алгоритмы на графах: представления графов, схемы поиска в глубину и ширину, минимальное остовное дерево, кратчайшие пути.
- •2.1.Поиск в глубину
- •2.2 Поиск в ширину.
- •2. Протоколы взаимодействия объектов вычислительных структур. Понятие протокола.
- •3. Вывод контекстно-свободных (кс) – грамматик и правила построения дерева вывода. Синтаксический разбор. Способы задания схем грамматик. Форма Бэкуса-Наура.
- •1. Теория сложности алгоритмов: np-сложные и труднорешаемые задачи.
- •2. Недетерминированные конечные автоматы. Конечные преобразователи и переводы. Преобразование некоторых грамматик к автоматному виду.
- •3. Объектно-ориентированное проектирование. Принципы проектирования. Схемы, диаграммы, инструменты.
- •1. Детерминированные конечные автоматы. Эквивалентные состояния и автоматы.
- •2. Синтаксический анализ. Метод оперативного предшествования. Восходящие и нисходящие методы синтаксического анализа.
- •2. Жизненный цикл программного обеспечения. Структура жизненного цикла согласно международного стандарта.
- •1. Нисходящие распознаватели. Ll(k) – грамматики. Построение детерминированного нисходящего распознавателя.
- •2. Параллельная обработка как основа высокопроизводительных вычислений. Уровни организации параллелизма: уровень заданий, программ и команд. Системы (языки) параллельного программирования.
- •1. Восходящие распознаватели. Lr(k) грамматики. Построение грамматики.
- •2. Понятие архитектуры вычислительной системы (вс). Архитектура как набор компонент и как система уровневых интерфейсов. Основные аппаратные и программные элементы вс.
- •1.1. Архитектура как набор взаимодействующих компонент
- •1.2. Архитектура как интерфейс между уровнями физической системы
- •1. Магазинные преобразователи. Определение магазинного преобразователя. Перевод, определяемый преобразователем.
- •2. Архитектура системы команд. Микропроцессоры (мп) с полным (cisc) и сокращённых (risc) набором команд. Основные принципы risc- архитектуры. Организация risc мп Alpha 21x64 фирмы dec.
- •Особенности архитектуры Alpha компании dec
- •1. Описание перевода или трансляции. Синтаксически-управляемые (су) – схемы.
- •2. Основные идеи объектно-ориентированных языков программирования. Создание абстрактных типов данных. Инкапсуляция. Полиморфизм. Наследование.
- •3. Развитие архитектур современных мп. Конвейеризация и динамическое выполнение потока команд. Суперскалярность. Архитектура epic мп Intel itanium.
- •1. Транслирующие грамматики. Построение транслирующей грамматики по су-схеме. Атрибутные транслирующие грамматики.
- •3. Векторные и векторно-конвейерные вс. Структура векторного процессора. Матричные вс.
- •1. Трансляторы, интерпретаторы и компиляторы. Стадии работы компиляторы. Лексический анализ.
- •3. Системы массовой параллельной обработки (мрр). Супер эвм фирмы sgi - Cray t3e(t3d) -1200.
- •2. Классификация и типы вс. Многомашинные и многопроцессорные вс. Представление вс на основе распределения потоков команд и данных (классификация Флинна)
3. Вывод контекстно-свободных (кс) – грамматик и правила построения дерева вывода. Синтаксический разбор. Способы задания схем грамматик. Форма Бэкуса-Наура.
Вывод в КС-грамматиках и правила построения дерева вывода
Формальные грамматики позволяют задавать языки, представляющие множества цепочек, построенных по определенным правилам. Используемый способ задания позволяет построить любую цепочку, принадлежащую языку. Чтобы сделать процесс построения, называемый выводом, наглядным, его изображают в виде графа, точнее, в виде дерева, которое называют синтаксическим деревом или деревом вывода. Учитывая, что вывод любой цепочки языка, принадлежащей языку, порождаемому заданной грамматикой, должен начинаться с начального символа, правила построения дерева можно сформулировать так:
1) В качестве начальной вершины или корня дерева возьмем вершину, которую обозначим начальным символом грамматики <I>; эта вершина образует нулевой ярус дерева,
2) Если при выводе цепочки на очередном шаге используется правило грамматики <A> ® a и вершина, помеченная нетерминалом <A>, расположена на ярусе с номером k-1, то к построенному дереву нужно добавить столько вершин, сколько содержится символов в цепочке a, расположить эти вершины на ярусе k , обозначить их символами цепочки a и соединить эти вершины дугами с вершиной <A>. Результатом вывода является множество конечных узлов - листьев, которые выписываются при обходе дерева слева - вниз - направо - вверх . Рассмотрим, например, грамматикy Г1:
Г1: Vт = {a, b}, Va = {<I>}, R = {<I> ® a<I>b, <I> ® ab },
которая порождает язык L(Г8) = {aa...abb...b}, где а и b повторяются по n раз, n=1,2,...
Вывод цепочки с помощью правил этой грамматики имеет вид:
Синтаксический разбор
Вывод цепочки с помощью правил грамматики может быть задан не только в виде синтаксического дерева. Если пронумеровать правила грамматики, то последовательность номеров используемых правил также задает вывод.
Определение. Последовательность номеров правил грамматики Г, применение которых позволяет построить вывод рассматриваемой цепочки s из начального символа грамматики, называется синтаксическим разбором s.
Например, в следующей грамматике Г1. 9:
Vт = { i, +, * , (, ) }, Va = {<E>, <T>, <P>}
R ={ (1) <E> ®<E> +<T>, (2) <E> ®<T>, (3) <T> ®<T> *<P>, (4) <T> ®<P>, (5) <P> ®(E), (6) <P> ® i }, правила которой пронумерованы, вывод <E> Ю <E> +<T> Ю <T> +<T> Ю <T> *<P> +<T> Ю <P> *<P> +<T> Ю i * <P> +<T> Ю i * i +<T> Ю i * i +<P> Ю i * i + i
имеет синтаксический разбор [1,2,3,4,6,6,4,6].
Способы задания схем грамматик
Схема грамматики содержит правила вывода, определяющие синтаксис языка, или, другими словами, возможные компоненты и конструкции цепочек порождаемого языка. Для задания правил используются различные формы описания: символическая, форма Наура-Бэкуса, итерационная форма и синтаксические диаграммы.
В работах, связанных с рассмотрением общих свойств грамматик, обычно применяют символическую форму задания правил. Эта форма была рассмотрена в предыдущем параграфе. Она предусматривает использование в качестве элементов нетерминального словаря отдельных символов и стрелки в качестве разделителя правой и левой частей правила.
Форма Наура-Бэкуса
При описании синтаксиса конкретных языков программирования приходится вводить большое число нетерминальных символов, и символическая форма записи теряет свою наглядность. В этом случае применяют форму Наура-Бэкуса (ФНБ), которая предполагает использование в качестве нетерминальных символов комбинаций слов естественного языка, заключенных в угловые скобки, а в качестве разделителя - специального знака, состоящего из двух двоеточий и равенства. Например, если правила <L> ® <L> и <L> ® <E> записаны в символической форме, и символ <L> соответствует синтаксическому понятию "список", а символ <E> - "элемент списка", то их можно представить в форме Наура-Бэкуса так:
<список>::= <элемент списка><список>,
<список>::= <элемент списка>.
Чтобы сократить описание схемы грамматики, в ФБН разрешается объединять правила c одинаковой левой частью в одно правило, правая часть которого должна включать правые части объединяемых правил, разделенные вертикальной чертой. Используя объединение правил, для рассматриваемого примера получаем:
<список>::=<элемент списка><список>|<элемент списка>.
Билет 20