Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМКД-1 МУИТ Физика-лекции.doc
Скачиваний:
1
Добавлен:
08.01.2020
Размер:
44 Mб
Скачать

Энергия заряженного проводника

Заряд q , находящийся на некотором проводнике, можно рассматривать как систему точечных зарядов q. Ранее мы получили (3.7.1) выражение для энергии взаимодействия системы точечных зарядов:

. (3.7.10)

Поверхность проводника является эквипотенциальной. Поэтому потенциалы тех точек, в которых находятся точечные заряды qi, одинаковы и равны потенциалу  проводника. Воспользовавшись формулой (3.7.10) получим для энергии заряженного проводника выражение:

. (3.7.11)

Любое, из ниже приведенных формул (3.7.12) дает энергию заряженного проводника:

. (3.7.12)

Итак, логично поставить вопрос: где же локализована энергия, что является носителем энергии- заряды или поле? В пределах электростатики , которая изучает постоянные по времени поля неподвижных зарядов, дать ответ невозможно. Постоянные поля и обусловившие их заряды не могут существовать обособленно друг от друга. Однако меняющиеся во времени поля, могут существовать независимо от возбудивших их зарядов и распространяться в виде электромагнитных волн. Опыт показывает, что электромагнитные волны переносят энергию. Эти факты заставляют признать, что носителем энергии является поле.

Литература:

Осн. 2 [11-81, 84-97], 7 [154-194], 8 [148-179].

Доп. 22 [8-102].

Контрольные вопросы:

1. При каких условиях силы взаимодействия двух заряженных тел можно найти по закону Кулона?

2. Чему равен поток напряженности электростатического поля в вакууме через замкнутую поверхность?

3. Расчет каких электростатических полей удобно производить на основе теоремы Остроградского-Гаусса?

4. Что можно сказать о напряженности и потенциале электростатического поля внутри и у поверхности проводника?

Лекция № 6.

8. Постоянный электрический ток Сила и плотность тока.

Электрический ток – направленное движение носителей электрических зарядов. Если в данной среде происходит упорядоченное перемещение заряженных частиц под действием электрического поля, то ток называется током проводимости. Направление тока совпадает с направлением вектора напряжённости электрического поля . Сила тока – скалярная величина, численно равная количеству заряда, проходящего через сечение проводника за единицу времени, т.е.

. (3.8.1)

Если I = const, то такой ток называется постоянным. Единицей силы тока в СИ является ампер (А). Это одна из основных единиц системы СИ, которая устанавливается на основе закона взаимодействия двух токов. Еще одной важнейшей характеристикой тока считается его плотность, определяемая формулой:

, (3.8.2)

где dS – площадь, через которую проходит ток dI. В СИ i измеряется в (А/м2). Итак, наличие в данной среде свободных носителей электрических зарядов – заряженных частиц и электрического поля – необходимое условие для тока проводимости. Классическая элекутронная теория проводимости металлов, созданная П. Друде, затем развитая Г.Лоренцем, сумела получить основные законы электрического тока- законов Ома и Джоуля-Ленца, устновленных опытным путем. Формула закона Ома для плотности тока выглядит так:

, (3.8.3)

поскольку векторы и имеют одинаковое направление можно последнюю формулу написать и так:

. (3.8.4)

Затем закон Джоуля-Ленца для плотности тепловой мощности тока имеет вид:

. (3.8.5)

В этих формулах – удельное сопротивление, – удельная проводимость. Из формул (3.8.3) и (3.8.5) можно перейти к интегральным формам записи законов Ома и Джоуля-Ленца.