
- •Составитель: Уразаков е.И. Доцент кафедры ит
- •Учебно-методический комплекс дисциплины рассмотрен на заседании кафедры «Информационные технологии»
- •Содержание умкд
- •Составитель: Уразаков е.И. Доцент кафедры ит
- •Календарный план лекций, лабораторных занятий, срсп, срс:
- •Литература по дисциплине
- •2. Программа обучения для студента (syllabus)
- •5. Содержание дисциплины:
- •3. График выполнения и сдачи заданий по дисциплине
- •Распределение баллов по видам занятий и работ
- •4. Карта учебно-методической обеспеченности дисциплины (кумод)
- •5. Календарно-тематический план
- •Лабораторные занятия - 30 часа
- •Срсп аудиторные - 15 часов
- •6. Лекционный комплекс
- •2.2 Конспект лекционных занятий
- •I. Кинематика
- •Или в векторной форме: (1.1.2)
- •1.4. Ускорение и его составляющие
- •1.5. Поступательное движение твердого тела
- •1.6. Кинематика вращательного движения
- •II. Динамика материальной точки и поступательного движения твёрдого тела
- •2.1. Первый закон Ньютона – закон инерции
- •2.2. Сила. Масса
- •2.3. Второй закон Ньютона – основной закон динамики материальной точки
- •2.4. Третий закон Ньютона
- •2.5. Основной закон динамики поступательного движения твердого тела
- •2.6. Закон сохранения импульса
- •2.7. Центр масс механической системы и закон его движения
- •2.8. Виды сил в механике
- •III. Работа и механическая энергия
- •3.1. Энергия, работа силы, мощность
- •То работа определяется площадью заштрихованной фигуры. Для характеристики скорости совершения работы вводится понятие мощности
- •3.2. Механическая энергия системы тел
- •3.3. Закон сохранения механической энергии
- •IV. Динамика вращательного движения твёрдого тела
- •4.1. Момент силы
- •4.2. Момент инерции тела
- •4.4. Основное уравнение динамики вращательного движения твердого тела
- •4.5. Момент импульса и закон его сохранения
- •V. Элементы специальной (частной) теории относительности. Постулаты теории относительности
- •6. Элементы механики сплошных сред
- •Уравнение Бернулли
- •Давление в потоке жидкости
- •7. Ламинарное и турбулентное течения. Вязкость
- •VIII. Колебания
- •8.3. Энергия материальной точки, совершающей гармонические колебания
- •8.6. Затухающие колебания
- •8.7. Вынужденные колебания
- •IX. Волны.
- •9.1. Механические гармонические волны
- •9.2. Уравнение плоской бегущей волны
- •9.3. Стоячая волна
- •Часть II. Молекулярная физика и термодинамика
- •I. Термодинамические системы и их параметры
- •1.1. Термодинамические параметры и процессы
- •Уравнение состояния идеального газа
- •II. Молекулярно-кенетическая теория идеальных газов
- •2.1. Основное уравнение молекулярно-кинетической теории идеального газа для давления
- •2.2. Средняя кинетическая энергия поступательного движения молекул газа
- •2.3. Статистические распределения
- •2.3.1. Закон равномерного распределения энергии по степеням свободы
- •2.3.2. Распределение Больцмана для частиц во внешнем силовом поле
- •2.3.3. Закон распределения молекул газа по скоростям (закон Максвелла)
- •2.4. Явления переноса в термодинамически неравновесных системах
- •III. Первое начало термодинамики
- •3.1. Внутренняя энергия системы
- •3.2. Работа и теплота
- •3.3. Первый закон термодинамики
- •3.4. Графическое изображение термодинамических процессов и работы
- •3.6. Применение первого начала термодинамики к изопроцессам в идеальном газе
- •3.6.2. Изобарный процесс ( )
- •IV. Второе начало термодинами
- •4.1. Обратимые и необратимые процессы
- •4.2. Круговые процессы.
- •4.3. Идеальная тепловая машина Карно
- •4.4. Теорема Карно
- •4.5. Неравенство Клаузиуса
- •4.6. Энтропия
- •4.6.1. Свойства энтропии
- •4.7. Второе начало термодинамики
- •V. Рееальные газы и пары
- •5.1 Уравнение Ван-дер-Ваальса
- •1. Учет собственного объема молекул
- •2. Учет притяжения молекул
- •5.2. Изотермы Ван-дер-Ваальса и их анализ
- •5.3. Критическое состояние вещества. Фазовые переходы
- •5. 4. Внутренняя энергия реального газа
- •Часть III. Электрическое поле.
- •1. Закон Кулона.
- •2. Электростатическое поле. Напряженность поля.
- •3. Теорема Гаусса.
- •4. Свойства электростатических полей.
- •5. Проводники в электрическом поле.
- •Электрическая емкость
- •6. Диэлектрики в электрическом поле Типы диэлектриков.
- •Поляризованность
- •Поляризационные заряды
- •Электрическое смещение.
- •7. Энергия электрических зарядов
- •Энергия заряженного конденсатора
- •Энергия взаимодействующих зарядов.
- •Энергия заряженного проводника
- •8. Постоянный электрический ток Сила и плотность тока.
- •Правила Кирхгофа для разветвлённых цепей.
- •Электропроводность газов.
- •Часть IV. Магнитное поле
- •1. Вращающий момент. Основные характеристики магнитного поля.
- •2. Закон Био - Савара - Лапласа.
- •3. Действия магнитного поля на токи и движущиеся заряды.
- •4. Действие магнитного поля на движущиеся заряды. Сила Лоренца.
- •5. Эффект Холла.
- •6. Циркуляция вектора для магнитного поля в вакууме. Закон полного тока.
- •7. Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля.
- •Работа по перемещению проводника с током в магнитном поле.
- •8. Явление электромагнитной индукции Закон Фарадея. Правило Ленца.
- •Явление самоиндукции.
- •Взаимная индукция.
- •Энергия магнитного поля.
- •9. Магнитное поле в веществе
- •Магнитные моменты электронов и атомов.
- •Намагниченность. Магнитное поле в веществе.
- •Закон полного тока для магнитного поля в веществе.
- •10. Уравнение максвелла Первое уравнение Максвелла.
- •Второе уравнение Максвелла.
- •Полная система уравнений Максвелла
- •7. Планы лабораторных занятий
- •1. Математическая обработка результатов измерения физических величин.
- •2. Изучение законов кинематики и динамики поступательного движения.
- •3. Изучение упругого и неупругого удара тел.
- •4. Изучение законов динамики вращательного движения.
- •5. Определение момента инерции махового колеса.
- •6. Определение ускорения свободного падения с помощью математического маятника.
- •7. Определение ускорения свободного падения с помощью физического, оборотного маятника.
- •8. Методические указания по лабораторным занятиям
- •Примеры решения задач
- •Примеры решения задач
- •Примеры решения задач
- •10. Материалы для самостоятельной работы студента
- •11. Материалы по контролю и оценке учебных достижений обучающихся Перечень экзаменационных вопросов по пройденному курсу
- •Перечень специализированных аудиторий кафедры
Энергия заряженного проводника
Заряд q , находящийся на некотором проводнике, можно рассматривать как систему точечных зарядов q. Ранее мы получили (3.7.1) выражение для энергии взаимодействия системы точечных зарядов:
.
(3.7.10)
Поверхность проводника является эквипотенциальной. Поэтому потенциалы тех точек, в которых находятся точечные заряды qi, одинаковы и равны потенциалу проводника. Воспользовавшись формулой (3.7.10) получим для энергии заряженного проводника выражение:
.
(3.7.11)
Любое, из ниже приведенных формул (3.7.12) дает энергию заряженного проводника:
.
(3.7.12)
Итак, логично поставить вопрос: где же локализована энергия, что является носителем энергии- заряды или поле? В пределах электростатики , которая изучает постоянные по времени поля неподвижных зарядов, дать ответ невозможно. Постоянные поля и обусловившие их заряды не могут существовать обособленно друг от друга. Однако меняющиеся во времени поля, могут существовать независимо от возбудивших их зарядов и распространяться в виде электромагнитных волн. Опыт показывает, что электромагнитные волны переносят энергию. Эти факты заставляют признать, что носителем энергии является поле.
Литература:
Осн. 2 [11-81, 84-97], 7 [154-194], 8 [148-179].
Доп. 22 [8-102].
Контрольные вопросы:
1. При каких условиях силы взаимодействия двух заряженных тел можно найти по закону Кулона?
2. Чему равен поток напряженности электростатического поля в вакууме через замкнутую поверхность?
3. Расчет каких электростатических полей удобно производить на основе теоремы Остроградского-Гаусса?
4. Что можно сказать о напряженности и потенциале электростатического поля внутри и у поверхности проводника?
Лекция № 6.
8. Постоянный электрический ток Сила и плотность тока.
Электрический ток – направленное движение носителей электрических зарядов. Если в данной среде происходит упорядоченное перемещение заряженных частиц под действием электрического поля, то ток называется током проводимости. Направление тока совпадает с направлением вектора напряжённости электрического поля . Сила тока – скалярная величина, численно равная количеству заряда, проходящего через сечение проводника за единицу времени, т.е.
.
(3.8.1)
Если I = const, то такой ток называется постоянным. Единицей силы тока в СИ является ампер (А). Это одна из основных единиц системы СИ, которая устанавливается на основе закона взаимодействия двух токов. Еще одной важнейшей характеристикой тока считается его плотность, определяемая формулой:
,
(3.8.2)
где dS – площадь, через которую проходит ток dI. В СИ i измеряется в (А/м2). Итак, наличие в данной среде свободных носителей электрических зарядов – заряженных частиц и электрического поля – необходимое условие для тока проводимости. Классическая элекутронная теория проводимости металлов, созданная П. Друде, затем развитая Г.Лоренцем, сумела получить основные законы электрического тока- законов Ома и Джоуля-Ленца, устновленных опытным путем. Формула закона Ома для плотности тока выглядит так:
,
(3.8.3)
поскольку
векторы
и
имеют одинаковое направление можно
последнюю формулу написать и так:
.
(3.8.4)
Затем закон Джоуля-Ленца для плотности тепловой мощности тока имеет вид:
.
(3.8.5)
В
этих формулах
– удельное сопротивление,
– удельная проводимость. Из формул
(3.8.3) и (3.8.5) можно перейти к интегральным
формам записи законов Ома и Джоуля-Ленца.