- •Вопросы
- •Постановка задачи оптимизации.
- •Решение задач линейной оптимизации с помощью ms Excel.
- •Анализ чувствительности оптимального решения к изменению параметров и поиск альтернативных решений.
- •Содержание отчета об устойчивости.
- •Экономический смысл теневой цены. Дефицитный ресурс.
- •Нормированная стоимость продуктов. Влияние на устойчивость решения.
- •Теневая цена и рентабельность инвестиций.
- •Целочисленная оптимизация. Проблемы целочисленной оптимизации.
- •Проблемы, требующие использования двоичных переменных.
- •Методика учета постоянных издержек при оптимизации. Срок окупаемости.
- •Замкнутая и несбалансированная задачи о назначениях.
- •Замкнутая и несбалансированная транспортная задача.
- •Проблема выбора оптимального маршрута.
- •Дефицитный ресурс. Планирование от «узкого места».
- •Модель экономичного размера заказа (eoq - Economic Order Quantity)
- •17. Модели управления запасами: определение момента для нового заказа при вероятностном распределении требований. Безопасный уровень запаса и риск невыполнения требования . (раздатка 5)
- •18. Необходимые характеристики случайных величин. Расчет с помощью функций ms Excel.
- •19. Использование частотной диаграммы и кумулятивной кривой для оценки вероятностей финансовых исходов и риска потерь.
- •21. Формулы для расчета оптимального заказа.
- •22. Формулы для расчета максимально возможной прибыли при управлении заказами.
- •23. Стратегии уменьшения потерь при управлении запасами.
- •24. Риск дефицита и уровень обслуживания. (раздатка 5)
- •25. Безопасный резерв товара. (раздатка 5)
- •26. Издержки хранения товара и цена обеспечения высокого уровня обслуживания клиентов.
- •27. Модели теории очередей. Принципы классификации систем массового обслуживания. Пример.
- •Принципы расчета экономических параметров систем массового обслуживания. Пример.
- •Альтернативы и состояния окружения.
- •Матрица выигрышей при принятии решения.
- •Матрица упущенных возможностей.
- •Критерии принятия решений в условиях полной неопределенности.
- •Критерий минимаксного риска (минимаксных сожалений).
- •Критерии принятия решений в условиях риска (статистической неопределенности).
- •Ожидаемая монетарная ценность (emv). Ожидаемые упущенные возможности (eol).
- •Монетарная ценность совершенной информации. Грубая оценка монетарной ценности обычной информации.
- •37. Выбор решения в условиях цепочки последствий. Деревья решений.
- •38. Надстройка «Дерево решений», методика применения. (есть в электронной раздатке)
- •39. Расчет emv и npv по дереву решений.
- •40. Анализ чувствительности решения, выбираемого по дереву, к параметрам поставленной задачи.
- •41. Сценарный анализ для дерева решений и выработка приемлемой стратегии компании.
- •42. Диаграммы Ганта и сетевые диаграммы при планировании проекта.
- •43 Сетевые диаграммы при планировании проекта.
- •Использование ms Project для управления проектом.
- •Стоимость сокращения длительности проекта. Расчет оптимальной длительности проекта с учетом экономической целесообразности.
- •Сетевые диаграммы при планировании проекта: вероятностное распределение времени выполнения отдельных этапов проекта. Pert: расчет среднего ожидаемого времени выполнения проекта и его дисперсии.
- •Вероятность выполнения проекта точно в срок. Пессимистическая и оптимистическая оценки длительности проекта. Назначение даты завершения проекта с учетом допустимых рисков.
- •Нормальное распределение
- •Стандартное нормальное распределение
Экономический смысл теневой цены. Дефицитный ресурс.
Таблица «Ограничения» содержит колонку «Теневая цена».
Теневые цены - Yi - показывают, как меняется целевая функция при малом изменении количества ресурсов bi: P = Yi * bi
Эти оценки верны только в пределах устойчивости решения (при этом численные значения переменных решения Xj, конечно изменяются).
Пределы изменения bi, в которых теневая цена сохраняется, также даны в таблице «Ограничения» («Допустимое увеличение» и «Допустимое уменьшение» величины ограничения).
Причем, если ресурс используется полностью (дефицитный), существует как верхний, так и нижний предел.
Если же ресурс используется не полностью, верхний предел устойчивости равен бесконечности (Excel пишет 1Е+30, что означает 10+30, для программы – это практическая бесконечность).
Нормированная стоимость продуктов. Влияние на устойчивость решения.
Нормированная стоимость касается неизвестных плана. Этот показатель говорит о том, как изменится оптимальное значение ЦФ при выпуске продукции, которой нету в оптимальном плане.
Теневая цена и рентабельность инвестиций.
Вопрос№7:
Теневая цена - Показывает как изменится целевая функция задачи ЛП, если количество соответствующего дефицитного ресурса увеличить на единицу. Для недефицитного ресурса, теневая цена равна нулю
Целочисленная оптимизация. Проблемы целочисленной оптимизации.
На практике часто встречаются проекты, которые нельзя реализовать частями. Кроме того, сами объекты инвестирования могут не подлежать дроблению (например, здания, персонал и др.). В этих случаях целесообразно воспользоваться целочисленной оптимизацией, то есть наложить на ряд параметров дополнительные ограничения.
Переход к целочисленным ограничениям в задачах линейной оптимизации приводит к изменению алгоритма решения задачи – вместо очень эффективного симплекс-метода используется медленный и не очень надежный метод ветвей и границ. Это приводит к катастрофическому увеличению времени расчета и к необходимости специального исследования корректности решения, что чаще всего обесценивает метод линейной оптимизации в конкретном случае с точки зрения практического менеджера.
В некоторых случаях задачу, требующую использования целых или двоичных ограничений, удается сформулировать так, что решение заведомо получается целочисленным даже при отсутствии соответствующих ограничений. Разумеется, задача в этих случаях решается очень быстро и при большом числе переменных, так как для решения по-прежнему используется алгоритм симплекс-метода.
Проблемы, требующие использования двоичных переменных.
Такие задачи называют транспортными задачами и задачами о назначениях (по причинам сугубо историческим). Транспортные задачи обычно решают проблему перевозок от нескольких поставщиков нескольким потребителям с минимальными затратами. Задачи о назначениях решают проблему назначений одних объектов в пару к другим (людей – людям, людей – работам, складов – потребителям и т.д.) в соответствии с оптимальным значением выбранного показателя.
Кроме задач собственно транспортных и задач о назначениях такими полезными свойствами обладают, например, задачи о кратчайшем маршруте в сети дорог (используются в системах глобального позиционирования GPS для прокладывания маршрутов) и некоторые другие.
