
- •Вопрос 1 - Происхождение грунтов. Составные части грунтов
- •Вопрос 2 – Виды воды в грунте
- •Вопрос 3 – Газообразная составляющая грунта
- •Вопрос 4 – Структура, текстура и связность грунтов
- •Вопрос 1 - Основные физико - механические характеристики грунтов
- •Вопрос 2 - Классификация и типы грунтовых оснований
- •Вопрос 3 – Строение оснований
- •Вопрос 1 – Основные положения. Расчетная схема взаимодействия
- •Вопрос 2 – Определение напряжений по подошве фундаментов и сооружений
- •Вопрос 3 – Определение напряжений в грунтовом массиве от действия местной нагрузки на его поверхности.
- •Вопрос 4 – Влияние формы и площади фундамента в плане
- •Тема: «Определение напряжений в массиве грунтов от действия собственного веса и приближенными методами от действия прилагаемых на грунт нагрузок»
- •Вопрос 1 – Определение напряжений в массиве грунтов от действия собственного веса
- •Вопрос 2 – Определение напряжений по методу угловых точек.
- •Вопрос 3 – Действие равномерно распределенной полосовой нагрузки (плоская задача)
- •Тема: «Расчет оснований по несущей способности (прочности) и устойчивости»
- •Вопрос 1 – Основные положения теории предельного равновесия
- •Вопрос 2 – Виды критических нагрузок, действующих
- •Вопрос 3 - Начальная критическая нагрузка
- •Вопрос 4 – Нормативное сопротивление и расчетное давление
- •Вопрос 5 – Предельная критическая нагрузка
- •Тема: «Практические способы расчета несущей способности и устойчивости оснований»
- •Вопрос 1 – Расчет основания по несущей способности
- •Вопрос 2 – Расчет фундамента на плоский сдвиг
- •Вопрос 3 - Понятие о коэффициенте устойчивости
- •Вопрос 4 – Расчет фундамента по схеме глубинного сдвига
- •Вопрос 5 – Расчет на опрокидывание
- •Тема: «Оценка устойчивости склонов, откосов и массивных подпорных стенок»
- •Вопрос 1 - Устойчивость откоса в идеально сыпучих грунтах
- •Вопрос 2 – Учет влияния фильтрационных сил
- •Вопрос 3 – Устойчивость вертикального откоса в идеально связных грунтах
- •Вопрос 4 – Устойчивость вертикального откоса в грунтах,
- •Вопрос 5 – Определение предельного давления на горизонтальную
- •Вопрос 6 – Определение формы равно устойчивого откоса
- •Вопрос 7 – Метод кругло цилиндрических поверхностей скольжения
- •1, 2, I … – номера элементов
- •Вопрос 8 – Учет действия подземных вод
- •Вопрос 9 – Учет сейсмических воздействий
- •Вопрос 10 – Другие методы расчета устойчивости откосов
- •Вопрос 11 - Расчет устойчивости подпорных стенок
- •Вопрос 12 - Длительная устойчивость откосов, склонов и удерживающих конструкций
- •Тема: «Расчет оснований по деформациям»
- •Вопрос 1 - Виды и природа деформаций грунта
- •Вопрос 2 – Общие сведения о методах расчета фундаментов
- •Вопрос 3 - Расчет фундаментов мелкого заложения по второй группе
- •Вопрос 3 – Расчет и проектирование свайных фундаментов
- •Вопрос 5 - Статические методы
- •3.3.1. Удк 624.15 Левкович т.И., Левкович ф.Н. Методические указания
- •Курс лекций
Вопрос 2 – Определение напряжений по подошве фундаментов и сооружений
При взаимодействии фундаментов и сооружений с грунтами основания на поверхности контакта возникают контактные напряжения. Характер распределения контактных напряжений зависит от жесткости (податливости) грунтов основания. Различают три случая, отражающих способности сооружения и основания к совместной деформации:
1) абсолютно жесткие сооружения, когда деформируемость сооружения ничтожно мала по сравнению с деформируемостью основания, и при определении контактных напряжений сооружение можно рассматривать как недеформируемое (массивные фундаменты под мостовые опоры, тяжелые прессы, дымовые трубы и т.д.);
2) абсолютно гибкие сооружения, когда деформируемость сооружения настолько велика, что оно свободно следует за деформациями основания;
3) сооружения конечной жесткости, когда деформируемость сооружения соизмерима с деформируемостью основания; в этом случае они деформируются совместно, что вызывает перераспределение контактных напряжений.
Критерием оценки жесткости сооружения может служить показатель гибкости t по М.И. Горбунову-Посадову:
t ≈ 10 E l3 / Eк h3 , (3.1)
где E, Eк - модули деформации грунта основания и материала конструкции;
l, h - длина и толщина конструкции.
Конструкция сооружения считается абсолютно жесткой, если t ≤ 1. в первом приближении жесткость конструкции можно оценить исходя из соотношения ее толщины и длины. При h / l > 1 конструкция может рассматриваться как абсолютно жесткая.
Существенное значение имеет также соотношение длины l и ширины b сооружения. При l / b ≥ 10 распределение контактных напряжений соответствует случаю плоской задачи, при l / b < 10 - пространственной.
При определении контактных напряжений важную роль играет выбор расчетной модели основания и метода решения контактной задачи, причем расчетная модель основания часто бывает не связана собственно с моделью грунтов, слагающих массив, поэтому модели грунтового основания для расчетов контактных напряжений иногда называют контактными моделями.
Наибольшее распространение в инженерной практике получили модель местных упругих деформаций и модель упругого полупространства.
Рисунок 7 – Схема балки (а)
и расчетная схема для случая плоской задачи (б)
Модель местных упругих деформаций. Согласно этой модели, реактивное напряжение в каждой точке поверхности контакта прямо пропорционально осадке поверхности основания в той же точке:
р (х) = k w (х) , (3.2)
где k – коэффициент пропорциональности, часто называемый коэффициентом постели, Па/м.
Схема деформирования такого основания показана на рисунке 8, а.
Видно, что в соответствии с моделью местных упругих деформаций осадки поверхности основания за пределами габаритов фундамента отсутствуют, то есть фундамент как бы установлен на пружинах, сжимающихся только в пределах его контура.
Модель упругого полупространства. Эта модель, в отличие от предыдущей модели, предусматривает, что поверхность грунта оседает как в пределах площади загрузки, так и за ее пределами (Рисунок 8, б). Причем кривизна прогиба зависит от механических свойств грунтов и мощности сжимаемой толщи в основании.
В случае плоской деформации прогиб поверхности под действием сосредоточенной силы Р описывается уравнением (3.3):
w (x) = [ P ln (x - ξ) + D ] / π C , (3.3)
где С = Е / (1 – μ2) – коэффициент жесткости основания;
х – координата точки поверхности, в которой определяется осадка;
ξ - координата точки приложения силы Р;
D - постоянная интегрирования.
Рисунок 8 – Деформация поверхности основания:
а) по модели местных упругих деформаций;
б) по модели упругого полупространства
При определении прогибов поверхности от действия распределенной нагрузки уравнение (3.3) необходимо проинтегрировать по площади загружения.
Недостатком модели упругого полупространства является то, что в ней не ограничивается мощность сжимаемой толщи в основании сооружения. В реальных условиях взаимодействия фундамента и основания мощность сжимаемой толщи обычно бывает ограничена, что влияет на характер распределения контактных напряжений.
Общая схема определения контактных напряжений с использованием указанных выше моделей заключается в совместном решении уравнении уравнений.