Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Неманипулируемые механизмы обмена в активных системах - Коргин Н.А

..pdf
Скачиваний:
19
Добавлен:
24.05.2014
Размер:
1.06 Mб
Скачать

Как было показано в примере 3, данная функция затрат удовлетворяет требованиям А.4. В соответствии с (39) получаем

x1 (r) =

x2 (r)2

+ òr

x2 (τ )2

dτ .

 

 

 

 

 

2r

2

 

 

 

 

 

 

 

rmin

 

 

 

 

 

 

Задача динамического программирования, которую необходимо

решить для построения механизма ОУ:

 

 

rmax

(r)

2

r

x2 (τ )

2

 

(41)Ef0 (Ω) = ò [x2 (r) −

x2

 

ò

 

dτ ]ρ(r)dr →max ,

 

 

 

2

 

 

 

rmin

2r

 

rmin

 

x2

 

 

 

 

 

(42) 0≤ x2(r)Y2, 0≤ x1(r) Y1.

 

 

 

Предположим, что

ограничения

 

(42) выполнены для r Ω , т.е.

множество вариантов обмена , составляющих механизм ОУ, лежит внутри

множества возможных вариантов обмена. В таком случае решение (41)

сведется к решению уравнения Ef0 = 0. Т.е.

 

 

 

 

x (r)

 

x (r) 1 − F(r)

 

 

x2

 

 

 

 

 

 

 

 

 

r

 

 

 

1 −

2

 

 

2

 

 

ρ(r)

 

= 0 , где F(r) =

ò ρ(s)ds .

 

 

 

r

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

rmin

 

 

 

 

Получаем, что механизм ОУ будет иметь следующий вид

 

 

(43) x2 (r) =

 

 

 

 

r

2 ρ(r)

 

 

, r Ω ;

 

 

 

 

rρ(r)

+ 1 − F(r)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(44) x1 (r) =

x2 (r)2

+ òr

x2 (τ )2

dτ , r Ω .

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

2r

 

 

rmin

 

 

 

 

 

 

 

 

Для равномерного распределения типов АЭ - F(r) =

r rmin

, вид

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

max

min

 

механизма ОУ можно упростить:

 

 

 

 

(45) x2 (r) =

 

 

r2

, r Ω ;

 

 

 

 

 

 

 

 

rmax

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(46) x (r) =

 

4r3

r3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

min

, r Ω .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

6r2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

max

 

 

 

 

 

 

 

 

 

61

Оценим ожидаемую прибыль центра от обмена при применении механизма (45), (46)

Ef

 

(Ω) =

1

(r2

+ r r + r2

) .

0

 

 

 

 

max

max min min

 

 

 

 

6rmax

 

 

Сравним полученный результат с ожидаемой полезностью,

получаемой при решении эквивалентной задачи стимулирования путем построения механизма без сообщения информации АЭ центру [48]:

Ef0 class (Ω) = max[rmax4 , rmin2 ].

Сравнение ожидаемой полезности для двух механизмов показывает, что при условии на Ω:

rmax < (1+3) .

rmin

механизм открытого управления с сообщением информации эффективнее механизма, описанного в [48], при равномерном вероятностном распределении типа АЭ на множестве возможных типов. Преимуществом механизма открытого управления является тот факт, что обмен совершается с АЭ любого типа, в то время как в механизме без сообщения

информации АЭ типа хуже, чем rmax2 , вынужден отказываться от обмена.

Вернемся к рассмотрению поставленной задачи в случае, когда ограничения (42) существенны. Выражение (43) можно трактовать, как фазовую траекторию, соответствующую оптимальному управлению. В соответствии с принципом оптимальности Беллмана [28] – отдельный

участок оптимальной траектории является также оптимальной

траекторией. Т.е решение

 

задачи (41)

сохранит свой вид в

области

~

 

 

где

~

= min{arg{x1

(r) = Y1},arg{x2 (r) = Y2 }}.

Для

r Ω′ = [rmin ,r ],

 

r

~

 

 

~

 

 

r Ω / Ω′ = (r ;rmax

] π (r) = π (r ). Для равномерного распределения типов

АЭ можно записать

 

 

 

 

 

(47) x2 (r) =

r2

 

, r Ω′;

 

 

 

 

rmax

 

 

 

 

 

 

 

 

 

 

 

62

 

 

 

4r3

- r3

 

 

 

 

 

 

 

 

 

 

 

 

 

(48) x1

(r) =

 

 

 

 

 

min

, r Ω′;

 

 

 

 

 

 

 

 

 

 

6r2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

max

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

~

= min{(rmaxY2 )

1/ 2

 

3

2

+

1 3

1/ 3

 

 

 

 

 

 

 

 

r

 

 

,(2 rmaxY1

4 rmin )

 

}.

 

 

 

 

 

 

 

Ожидаемая прибыль центра будет иметь более сложный вид

 

 

 

 

 

 

 

1

 

~

rmin

 

 

 

~2

~

 

~

~2

 

 

 

 

 

 

 

 

 

r

 

 

 

2

2

3

 

(49) Ef

0 (W) =

 

 

 

 

 

 

 

 

 

[2rmax (r

 

+ r rmin

+ rmin ) - (r

+ rmin )(r

+ rmin ) + rmin

]

6r2

(r

- r

 

)

 

 

 

 

 

 

max

max

min

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача 4.

 

Построить эффективный и неманипулируемый механизм

обмена для ОС с линейными функциями полезности Ц - f1 (x1 , x2 ) = rx1 x2 ,

и

АЭ

-

f1 (x1 , x2 ,r) = rx1 x2 .

Задача центра

максимизация

гарантированной

относительной

прибыли

от

обмена

min

 

f

0 (π (s))

® max .

 

 

 

 

max f0 det (s)

 

 

 

s

 

 

π

 

 

 

Множество возможных значений типа АЭ отрезок [rmin,rmax].

Распределение ресурса в схеме такое же, как в рассмотренном выше примере - весь ресурс первого типа Y1 сосредоточен у центра, весь ресурс второго типа Y 2 у АЭ. Причем существенным будем считать ограничение на ресурс первого типа.

Легко видеть, что функция полезности АЭ удовлетворяет требованиям

(F1) и (F2):

r Ω, х Х

f1 (x1 , x2 ,r)

= x1

³ 0,

r

 

 

 

 

 

 

т.е. выполнено F1. Также,

 

 

 

r Ω, х Х

f1(x1, x2

, r)

= 0 ,

x2r

 

 

 

 

 

 

 

что соответствует F2 b . Также очевидно,

r Ω, х Х, f1 (x1,x2 , r) = 1 > 0 , x1 r

что соответствует F2a.

63

Всоответствии с (39) получаем

x2 (r) = rx1 (r) + òr x1 (τ )dτ .

 

 

 

 

 

 

 

 

rmin

 

 

 

 

 

 

 

Для построения механизма ОУ необходимо решить следующее

уравнение:

 

 

 

 

 

 

 

d

 

f0 (π (s))

 

 

 

 

 

(

 

 

 

) = 0.

 

 

 

 

ds

max f0 det (s)

 

 

 

 

 

 

 

Очевидно, что max f det (s) = (s c)Y . Поэтому получаем, что

 

 

 

 

 

dx1 (r) x1 (r) +

0

 

1

(50)

 

1

r

x (τ )dτ = 0,

 

 

 

 

 

 

 

 

 

 

 

rminò

1

 

 

 

 

 

dr

r c

(r c)2

 

 

 

 

 

 

(51)0≤ x1(r) Y1.

Механизм имеет следующий вид:

x

(r) = μ(r

)Y (r c(1-

1

)), x (r) =

μ(rmax )Y , μ(r) = (1 + ln

r c

)−1 .

μ(r)

r c

2

max

1

1

μ(r) 1

 

 

 

 

 

 

 

min

 

Относительная гарантированная прибыль центра

f0 (π (r))

= μ(rmax ) .

max f0 det (r)

Следует заметить, что из процесса взаимодействия между центром и

АЭ можно исключить этап сообщения оценки своего типа активным агентом. Т.е для полученного прямого неманипулируемого механизма можно привести эквивалентный непрямой механизма. Данный переход может быть полезен с практичной точки зрения т.к. в процессе переговоров фигурируют только сами товары, предлагаемые к обмену.

Взаимодействие между центром и АЭ будет выглядеть следующим образом.

1)Центр сообщает АЭ «меню» μ - множество вариантов обмена.

2)АЭ выбирает оптимальный с его точки зрения вариант обмена.

3)Производится обмен в соответствии с выбранным вариантом.

Для задач 3 и 4, множество вариантов обмена, предлагаемых центром, будет выглядеть следующим образом. Для случая дискретного распределения типа АЭ μ = (x1i , x2i ), i =1...n , где х2i определяется из (34), х1i

64

из (35). Для непрерывного случая, μ = x1 (x2 ), x2 [x2 (rmin ), x2 (rmax )], и

определяется из (45) и (46). Очевидно, что (x

, x ) μ , оптимальные для

1

2

АЭ, будут совпадать с π (r) = (x1 (r), x2 (r)) , определяемым по все тем же (34) и (35) (или (45) и (46)). На левой части рисунка 8 представлено множество вариантов обмена, получаемое в задаче 3. На правой - для задачи 4.

x1

 

 

 

 

 

 

 

 

π (rmax )

x1

π (rmax )

 

 

 

 

 

 

 

 

 

 

 

 

 

~

 

Y1

Y1

 

 

 

 

 

π (r )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x1

(x

2 )

3

 

 

 

 

 

x2 ≈ exp(x1 ) + cx1

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π (rmin )

 

 

 

 

 

 

 

Y1 μ(rmax )

π (r )

 

 

 

 

 

 

 

 

 

 

 

 

min

 

 

r

/ r 2

 

 

 

 

r

 

x

 

x2

 

 

 

 

 

 

 

 

 

 

min

max

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

max

 

 

Рис. 8. «Меню»

2.3. Решение задачи обмена для двухэлементных обменных схем без иерархии

Рассмотрим обменную схему из двух агентов, в которой отсутствует иерархия, т.е. нет отношений подчиненности типа Ц АЭ. Т.к. понятие ОС подразумевает, что у агентов имеется возможность увеличить свою полезность путем обмена, то возникает вопрос поиска равновесия обмена (множество обменов), устраивающего каждого из участников

65

обмена. В качестве критерия, определяющего равновесие, например, могут выступать некие внешние цены на товары, которые присутствуют в ОС. Данный критерий, как было показано в разделе 1.4, использовался в модели обменной экономики Эджворта, а само равновесие называлось равновесием Вальраса [81]. Но как быть, если применение подобного затруднительно. В данном разделе рассматривается модель, в которой агенты не полностью осведомлены о параметрах друг друга. В такой

ситуации задача поиска равновесия осложняется возможностью агентов манипулировать информацией при обмене. Предлагаемый метод решения подобных задач основан на рассмотренном выше механизме ОУ каждый из агентов предлагает в качестве вариантов обмена свой механизм ОУ, где он выступает в роли центра. Выбранная модель ОС является модификацией модели ОС, рассматриваемой в разделе 1.1.

Агенты имеют следующие функции полезности:

ϕ0 (y01 , y0 2 ,r0 ) = r0 y0 2 + y01 ;

ϕ1 (y11 , y12 ,r1 ) = y11 - (Y2 - y12 )2 / 2r1 .

Начальное распределение ресурсов остается прежним:

æY

0

ö

y0 = ç

1

Y

÷ .

ç

0

÷

è

 

2

ø

Также, как и ограничения индивидуальной рациональности:

IR(y0)= {"i = 0,1,ϕi ( yi ) ³ ϕi ( yi 0 )}.

Информационное состояние схемы выглядит следующим образом.

Каждый из агентов знает все параметры схемы за исключением точного значения типа оппонента ему известно множество возможных значений

типа и вероятностное

распределение типа

Ω-i

= [r-imin,r-imax],

ρ-i(r-i),

ri max

 

 

 

 

 

òρi (ri )dr =1.

Для

простоты дальнейших

вычислений

будем

rimin

 

 

 

 

 

рассматривать

именно

непрерывный

случай

с равномерным

распределением ρ

i

(ri ) =

1

ri max - ri min

 

 

значение собственного типа.

=const. Каждый агент знает точное

66

Функции полезности агентов от обмена в данной модели записываются следующим образом (17), (18):

f0 (x1 , x2 ,r0 ) = r0 x2 x1 ;

f1 (x1 , x2 ,r1 ) = x1 x2 2 / 2r1 .

Процесс обмена (игра) происходит следующим образом:

1.Каждый из агентов сообщает свое «меню» или множество предлагаемых вариантов обмена, соответствующее механизму ОУ, в котором он выступает в роли центра.

2.Каждый из агентов сравнивает прибыль от наилучшего варианта обмена из предложенных оппонентом с ожидаемой прибылью от своего механизма обмена.

3.Каждый из агентов сообщает оппоненту свою заявку - по какому из предложенных механизмов он готов обмениваться (кем готов быть центром или АЭ).

4.Если позиции агентов не противоречивы (Ц - АЭ или АЭ Ц), то тот из них, кто выбрал роль АЭ, сообщает вариант обмена из меню оппонента, который его устраивает (или просто свой тип в случае прямого механизма). Если позиции элементов противоречивы (Ц - Ц или АЭ АЭ), то возникает конфликтная ситуация, варианты решения которой будут рассмотрены позже.

5.Элементы совершают обмен в соответствии с выбранным планом в случае непротиворечивости выбранных ими ролей.

Предполагается, что при одинаковой выгодности роли Ц и АЭ, любой из агентов предпочтет роль АЭ.

Данный вариант игры является «квазиинтеллектуальным», т.к. агенты

не используют предлагаемый оппонентом план для вычисления типа оппонента.

Оба агента строят механизмы ОУ, основываясь на максимизации

собственной ожидаемой прибыли Efi C (ri (s-i )) → max

π (s-i )

Механизм ОУ, предлагаемый агентом 0. Данная задача имеет вид,

аналогичный задаче из примера 4, за исключением вида функции полезности от обмена для центра. Т.е. задача динамического

67

программирования, которую необходимо решить для построения механизма ОУ, имеет следующий вид (41):

r1max

x

(r0 ,r1 )2

r1

x

(r0 ,τ )2

 

 

Ef0 (r0 ,Ω1 ) = ò

[r0 x2 (r0 ,r1 ) −

2

 

 

ò

2

 

 

dτ ]ρ1

(r1 )dr1 →max ,

 

2r

1

 

2

r1min

 

 

 

r1min

 

 

 

x2

 

 

 

 

 

 

 

при условиях

0≤ x2(r0, r1)Y2, 0≤ x1(r0, r1) Y1.

Решение данной задачи для равномерного распределения типа АЭ будет иметь следующий вид (43), (44):

(52)

x2 (r0 ,r1 ) = r0 r12

, r0 Ω0 , r1 Ω1;

 

 

 

 

 

 

 

 

 

 

r1max

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4r1

3

3

 

 

 

 

 

 

 

 

 

 

 

(53)

x (r0 ,r1 ) = r0 2

 

r1min

, r0

Ω0 , r1 Ω1.

 

 

 

 

 

 

 

2

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6r1max

 

 

 

 

 

 

 

 

 

 

 

1

1

~1

~1

= min{(rmaxY2 / r

0

 

1/ 2

3 2

 

0 2

+

1 3

1/ 3

 

Ω

 

= [r

min ,r

], r

 

)

 

,(2 rmaxY1

/ r

 

4 rmin )

 

}.

Для простоты анализа, но без потери общности, примем, что ресурсные ограничения выполняются для всех значений типов агентов. При данных предположениях ожидаемая прибыль агента 0 в качестве центра будет иметь следующий вид:

 

 

0

 

1

 

 

 

r0 2

 

12

 

1

1

12

(54)Ef0 (r

 

,Ω

) =

 

 

 

 

 

(r

max

+ r

 

max r

min + r min ) .

 

 

6r1max

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Прибыль АЭ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r1

3

 

3

 

 

 

 

 

0

 

1

) = r

0 2

 

 

r1min

 

 

 

 

(55) f1 (r

 

,r

 

 

(

 

 

 

 

) .

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6r1max

 

 

 

 

Механизм ОУ, предлагаемый агентом 1.

Задача

центра

Ef1 (Ω0 ,r1 )

max. Проверим, удовлетворяет ли

модель свойствам, позволяющим построить механизм ОУ. Функция

полезности АЭ

f0 (x1 , x2 ,r0 ) = r0 x2 x1 .

68

 

Соответственно,

 

 

 

0

0

, х Х

f

0

(x , x

,r0 )

= x2 ³ 0 ,

 

1

2

 

r

Ω

 

 

r0

 

 

 

 

 

 

 

 

 

 

т.е. выполнено F1. Также,

 

0

0

, х Х

f

0

(x , x

,r0 )

=1 > 0 ,

 

1

2

 

r

Ω

 

 

x2r

0

 

 

 

 

 

 

что соответствует F2a. Также очевидно,

r0 Ω0, х Х f0 (x1 , x2 ,r0 ) = 0 ,

x1r0

что соответствует F2b.

Приступим к построению механизма ОУ. Из (9) получаем

r0

x1 (r0 ,r1 ) = r0 x2 (r0 ,r1 ) - ò x2 (τ ,r1 )dτ .

r0min

Необходимо решить следующую задачу

r0max

x

(r0 ,r1 )2

r0

 

Ef1 (Ω0 ,r1 ) = ò

[r0 x2 (r0 ,r1 ) -

2

 

 

- ò x2 (τ ,r1 )dτ ]ρ0

(r0 )dr0 ®max ,

 

2r

1

r0min

 

 

 

r0min

x2

 

 

 

 

при условиях

0≤ x2(r0, r1)Y2, 0≤ x1(r0, r1) Y1.

Выше мы приняли, что ресурсные ограничения выполняются для любых типов агентов, поэтому решение поставленной задачи будет иметь следующий вид:

(56)x2 (r0 ,r1 ) = r1 (2r0 - r0 max ) , "r0 ÎW0= [rˆ0 ,r0 max ], "r1 ÎW1 ; x2 (r0 ,r1 ) = 0, "r0 ÎW0 / W0, "r1 ÎW1 ;

(57) x (r0

,r1 ) = r1 (r0 2 - (r0 max - rˆ0 )rˆ0 ), "r0 ÎW0= [rˆ0 ,r0 max ], "r1 ÎW1 ;

1

 

x (r0

,r1 ) = 0 , "r0 ÎW0 / W0, "r1 ÎW1

1

 

где

 

(58)rˆ0 = max[r0 min ,r0 max / 2].

69

Ожидаемая прибыль агента 1 в роли центра

(59)

Ef1 (Ω0 ,r1 ) =

2

r1

(

r0 2

r0

rˆ0

+ rˆ0

2

) .

 

 

max

 

max

 

 

3

4

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Прибыль АЭ

 

 

 

 

 

 

 

 

 

 

 

(60)

f

0

(r0 ,r1 ) = r

1[(r0

 

rˆ0 )rˆ0

− (r0

r0 )r0 ].

 

 

 

 

 

max

 

 

 

 

 

max

 

 

 

На рисунке 9 приводится вид «меню» - множества вариантов обмена, предлагаемых агентом 1.

 

 

 

x1

 

 

~

π (rmax )

 

 

π (r )

Y1

 

 

 

x

≈ (x

)2

 

 

1

2

 

 

 

 

 

 

rmax

x

 

 

 

π

(rˆ) 2

Рис. 9. Вид множества вариантов обмена, предлагаемых агентом 1.

Построив механизмы ОУ (52), (53) и (58), (59), можно проанализировать, какая из возможных позиций в иерархии выгодна для каждого из агентов, в зависимости от следующих параметров модели качество типа каждого из агентов, определяемое как отношение истинного типа агента к лучшему и его информированность отношение худшего из возможных типов оппонента к лучшему. Для этого необходимо сравнить

(54)и (60) для агента 0 и (59) и (55) для агента 1.

Для анализа выгодности позиций для агентов, введем следующие

замены: r0 = αrmax0 , rˆ0 = βrmax0 , r1 = γrmax1 , rmin1 rmax1 . Причем очевидно, что

(61) 0 <η ≤ γ ≤1,

и из (58) –

70

Соседние файлы в предмете Экономика