
- •Метрология, стандартизация, сертификация –определения, назначение.
- •Госсистема стандартизации. Законодательство рф.
- •Технические регламенты. Документы, цели принятия техрегламентов.
- •4.Основные понятия об измерениях.
- •6. Классификация методов измерения.
- •5.Физические величины. Системы единиц физических величин. Меры, типы, назначение.
- •7. Классификация измерительных приборов.
- •8. Виды измерений. Методы измерений.
- •9. Обозначение средств измерений.
- •Погрешности. Их классификация.
- •Технические характеристики приборов.
- •2.Неметрологические:
- •12. Чувствительность прибора.
- •13. Принципы работы электроизмерительных приборов
- •14. Общие узлы и детали приборов
- •15. Способы создания противодействующего момента. Стрелки измерительных приборов. Шкалы приборов. Успокоители.
- •16. Магнитоэлектрические им. Дост-ва и недостатки
- •17. Уравнение вращающего момента для магнит. Им
- •18. Поверка электроизмерительных приборов.
- •19. Схемы включения приборов магнитоэлектрических приборов.
- •20. Расширение пределов измерения приборов.
- •21.Омметры. Схема с последовательным включением
- •22.Омметры. Схема с параллельным включением.
- •23. Омметры с двух рамочным измерительным механизмом.
- •24. Мегомметры.
- •25. Измерение методом амперметра и вольтметра
- •26. Метод измерения сопротивления с помощью одного вольтметра.
- •28. Термоэлектрические приборы.
- •29. Электромагнитные им.
- •30. Уравнение вращающего момента, уравнение шкалы электромагнитных им.
- •31.Электромагнитные логометры
- •32.Защита электромагнитных приборов от внешних магнитных полей.
- •33.Электродинамические измерительные механизмы.
- •34.Уравнение вращающего момента, уравнение шкалы электродинамических им.
- •35. Электродинамические миллиамперметры.
- •36. Электродинамические вольтметры.
- •37.Электродинамические ваттметры.
- •38. Трансформаторы тока. Трансформаторы напряжения. Усилители.
- •39. Регистрирующие приборы.
- •40. Измерение и регистрация изменяющихся во времени электрических величин
- •41. Осциллографы. Классификация. Принцип действия электронно-лучевой трубки.
- •42. Устройство и принцип действия осциллографа.
- •43. Измерения с помощью осциллографа.
- •44. Измерение частоты и временнных интервалов с помощью осциллографа.
26. Метод измерения сопротивления с помощью одного вольтметра.
В
ыполнение
измерения Zx
для схемы на рис производится в
следующем порядке: вольтметр подключается
к источнику питания Vген - фиксируется
результат измерения V1;
вольтметр подключается последовательно
с измеряемым сопротивлением Zx
- фиксируется
результат V2.
Тогда Zx
определяется по формуле: Zx=
Rv(V1/V2-1),
где Rv
- сопротивление вольтметра.
27.
Приборы магнитоэлектрической системы
с преобразователями переменного тока
в постоянный. Вход
величины – перемен ток и напряжение,
на выходе – постоян ток и напряжение.
С целью применения магнитоэлектрич
ИМов с их достоинствами в качестве
средств измерения. В качестве
преобразователе используются диоды,
термопреобразователи, электронные
лампы, транзистор. Достоинства
диода: больш
срок службы, малые габариты, компактность,
простота, надёжность, высокая
чувствительность, малое потребление
мощности. Недостатки:
нелинейность харак-к, их температурные
и частотные зависимости, нестабильность
во времени.
Различают схемы однополупериодные и двухполуполупериодные диоды:
Однополуп.: Двухполуп.:
Иногда в схемах двухполуп-ого выпрямителя используется лишь два диода, а остальные заменяются резисторами. Это ведёт к снижению температур погрешности, но и к понижению чувс-сти. Основными параметрами являются их амплитудное значение (IM,UM), среднеквадратичное или действующее (I,U), средне выпрямительное (IСВ, UСВ).
-
коэффициент формы.,
- Коэффициент амплитуды.
Выпрямительные приборы обычно градуируются в среднеквадратичных (действительных) значениях синусоидал тока или напряжения. При градуировке прибора его включают в цепь синусоидал тока, полученный результат измеряют по шкале магнитоизмерительного механизма и умножают на 2,22 для однополупер-ой схемы и на 1,11 для двухполупер-ой и наносят на шкалу выпрямительного прибора.
28. Термоэлектрические приборы.
измерительный, прибор для измерения силы переменного тока, реже электрического напряжения, мощности. Представляет собой сочетание магнитоэлектрического измерителя с одним или несколькими термопреобразователями. Термопреобразователь состоит из термопары-датчик температуры, состоящий из двух соединённых между собой разнородных электропроводящих элементов (обычно металлических проводников, реже полупроводников)](или нескольких термопар) и нагревателя, по которому протекает измеряемый ток (рис.). Под действием тепла, выделяемого нагревателем, между свободными концами термопары возникает термоэдс, измеряемая магнитоэлектрическим измерителем. Для расширения пределов измерения термопреобразоватслей (по току от 1 а и выше) используют высокочастотные измерительные трансформаторы тока[электрический трансформатор, на первичную обмотку которого воздействует измеряемый ток или напряжение, а вторичная, понижающая, включена на измерительные приборы и реле защиты].
Т. п. обеспечивают сравнительно большую точность измерений в широком диапазоне частот и независимость показаний от формы кривой тока, протекающего через нагреватель. Их основные недостатки — зависимость показаний от температуры окружающей среды, значительное собственное потребление мощности, недопустимость больших перегрузок (не более чем в 1,5 раза). Применяются преимущественно для измерения действующего значения силы переменного тока (от единиц мкА до нескольких десятков А) в диапазоне частот от нескольких десятков гц до нескольких сотен Мгц с погрешностью 1—5%.
Схемы термоэлектрических приборов для измерения тока: а — контактная, с одной термопарой; б, в — бесконтактные, с одной и с несколькими включенными последовательно термопарами; г — с включением через высокочастотный трансформатор тока ТТ; Ix — измеряемый ток; rн — нагреватель; rt — термопара; ИМ — магнитоэлектрический измеритель.
Так же служат для измерения температур в различных средах. При Т<600 градусов применяются стальные трубки, при Т<1100 градусов трубки из легированной стали, а при Т<1400 градусов трубки из кварца и фарфора. Инерционность термопар характеризуется постоянной времени определяемой как время необходимое для того, чтобы вых величина датчика, перенесенного из среды с Т=30-35 градусов в среду с интенсивно перемешиваемой водой с Т=15-20 градусов, достигла 63% от установленного значения периода.
- малоинерционные Т<40 с., - среднеинерционные Т<60 с., - большой инерционности Т<3.5 мин.
Достоинства:высокая чувствительность 2. очень широкий диапазон частот (сотни МГц), 3.произвольная форма.
Недостатки:неравномерная шкала, 2. зависимость тока от температуры окр.ср.,3. большая инерционность, 4.чувствительность к перегрузкам.