
- •12.Поле тяжіння та його напруженість. Потенціал поля тяжіння. Космічні швидкості
- •13.Момент інерціі. Кінетична енергія обертання.
- •14. Момент сили. Рівняння динаміки обертального руху твердого тіла
- •15.Момент імпульсу та закон його збереження
- •16.Деформація твердого тіла.
- •19. Закон збереження єлектричного заряду. Закон кулона.
- •23.Полярізация дієлектриков. Сегнетоелектрики. Пьезоєлектрики.
- •24. Электрическая емкость проводника, конденсаторы, емкость конденсатора
- •25. . Энергия заряженного конденсатора. Єнерия єлектростатического поля
- •26. Єлектричний струм, сила та густина струму. Закон Ома, опір провідників.
- •27. Закон ома для неоднородной ділянки кола. Правило Кіргофа
- •28.Робота і потужність струму. Закон Джоуля-Ленца
- •Тлеющий разряд
- •Электрическая дуга
- •Коронный разряд
- •Искровой разряд
- •31. Магнітне поле та його характеристики. Закон Біо-Савара-Лапласа та його застосування для індукції магнітного поля
- •32. Закон Ампера. Взаємодія паралельних струмів.Сила Ампера . Праваило лівої руки.
- •33. Магнітна постійна . Одиниці магнітної індукції та напруженості магнітного поля.
- •34. Магнітне поле рухомого заряду.Дія магнітного поля на рухомий заряд. Прискорювачі заряджених частинок.Ефект Хола та його застосування.
- •Застосування
- •34.Магнітне поле соленоїда. Потік вектора магнітної індукції.
- •35. Робота переміщення провідника і контуру зі струмом у магнітному полі
- •36. Явище електромагнітної індукції.Закон Фарадея.Правило Ленца.
- •40. Взаємна індукція. Трансформаторі. Енергія магнітного поля.
- •41. Магнітні моменти електронів та атомів. Діа- та парамагнетизм. Намагніченість. Магнітне поле у речовині.
- •42. Природа феромагнетизму. Феромагнетики та їх властивості. Точка Кюрі
- •43. Феррити
27. Закон ома для неоднородной ділянки кола. Правило Кіргофа
I=ξ/R, где ξ— э.д.с., действующая в цепи, R — суммарное сопротивление всей цепи. В общем случае R = r+R1, где r — внутреннее сопротивление источника э.д.с., R1 — сопротивление внешней цепи. Поэтому закон Ома для замкнутой цепи будет иметь вид: I=ξ/(r+R1).
Если цепь разомкнута и, следовательно, в ней ток отсутствует (I=0), то из закона Ома (100.4) получим, что ξ12=2-1 т. е. э.д.с., действующая в разомкнутой цепи, равна разности потенциалов на ее концах. Следовательно, для того чтобы найти э.д.с. источника тока, надо измерить разность потенциалов на его клеммах при разомкнутой цепи.
Правила Кирхгофа для разветвленных цепей
Любая
точка разветвления цепи, в которой
сходится не менее трех проводников с
током, называется узлом.
При
этом ток, входящий в узел, считается
положительным, а ток, выходящий из
узла,— отрицательным.
Первое
правило Кирхгофа: алгебраическая
сумма токов, сходящихся в узле, равна
нулю:
Второе правило Кирхгофа рассмотрим контур, состоящий из трех участков. Направление обхода по часовой стрелке примем за положительное, отметив, что выбор этого направления совершенно произволен. Все токи, совпадающие по направлению с направлением обхода контура, считаются положительными, не совпадающие с направлением обхода — отрицательными. Источники э.д.с. считаются положительными, если они создают ток, направленный в сторону обхода контура. второе правило Кирхгофа: в любом замкнутом контуре, произвольно выбранном в разветвленной электрической цепи, алгебраическая сумма произведений сил токов Ii, на сопротивления Ri соответствующих участков этого контура равна алгебраической сумме э.д.с. ξ k, встречающихся в этом контуре:
28.Робота і потужність струму. Закон Джоуля-Ленца
Рассмотрим однородный проводник, к концам которого приложено напряжение U. За время At через сечение проводника переносится заряд dq = Idt. Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, работа тока dA=Udq=IUdt. (99.1)
Если сопротивление проводника R, то, используя закон Ома , получим
dA=I2Rdt=(U2/r)dt. (99.2)
P=dA/dt=UI=I2R=U2/R. (99.3)
Если сила тока выражается в амперах, напряжение — в вольтах, сопротивление — в омах, то работа тока выражается в джоулях, а мощность — в ваттах. На практике применяются также внесистемные единицы работы тока: ватт-час (Вт•ч) и киловатт-час (кВт•ч). 1 Вт•ч — работа тока мощностью в 1 Вт в течение 1 ч: 1 Вт•ч = 3600 Вт•с = 3,6•103 Дж; 1 кВт•ч=103 Вт•ч = 3,6•106 Дж.
Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии, dQ=dA. (99.4)
Таким
образом, получим
Выражение представляет собой закон Джоуля — Ленца, экспериментально установленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.
Выделим в проводнике элементарный цилиндрический объем dV=dSdl (ось цилиндра совпадает с направлением тока),
сопротивление которого R= (dl/dS). По закону Джоуля — Ленца, за время dt в этом объеме выделится теплота
29. Элементарная классическая теория электропроводности метал лов. Работа выхода электронов из металла. . Эмиссионные явления и их применение Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристаллической решетки металла. Это представление о природе носителей тока в металлах основывается на электронной теории проводимости метал лов.Первый из таких опытов — опыт Рикке (1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндров (Сu, Аl, Сu) одинакового радиуса. Несмотря на то что общий заряд, прошедший через эти цилиндры, достигал огромного значения (3,5•106 Кл), никаких, даже микроскопических, следов переноса вещества не обнаружилось. Это явилось экспериментальным доказательством того, что ионы в металлах не участвуют в переносе электричества, а перенос заряда в металлах осуществляется частицами, которые являются общими для всех металлов. Электроны проводимости при своем движении сталкиваются с ионами решетки, в результате чего устанавливается термодинамическое равновесие между электронным газом и решеткой. . Тепловое движение электронов, являясь хаотическим, не может привести к возникновению тока.При наложении внешнего электрического поля на металлический проводник кроме теплового движения электронов возникает их упорядоченное движение, т. е. возникает электрический ток. Как показывает опыт, свободные электроны при обычных температурах практически не, покидают металл. Следовательно, в поверхностном слое металла должно быть задерживающее электрическое поле, препятствующее выходу электронов из металла в окружающий вакуум. Работа, которую нужно затратить для удаления электрона из металла в вакуум, называется работой выхода. Укажем две вероятные причины появления работы выхода:Если электрон по какой-то причине удаляется из металла, то в том месте, которое электрон покинул, возникает избыточный положительный заряд и электрон притягивается к индуцированному им самим положительному заряду. Отдельные электроны, покидая металл, удаляются от него на расстояния порядка атомных и создают тем самым над поверхностью металла «электронное облако», плотность которого быстро убывает с расстоянием. Это облако вместе с наружным слоем положительных ионов решетки образует двойной электрический слой, поле которого подобно полю плоского конденсатора. Толщина этого слоя равна нескольким межатомным расстояниям (10-10 — 10-9 м). Он не создает электрического поля во внешнем пространстве, но препятствует выходу свободных электронов из металла. Таким образом, электрон при вылете из металла должен преодолеть задерживающее его электрическое поле двойного слоя. Разность потенциалов в этом слое, называемая поверхностным скачком потенциала, определяется работой выхода (А) электрона из металла:
=A/e, где е — заряд электрона.
Работа выхода выражается в электрон-вольтах (эВ): 1 эВ равен работе, совершаемой силами поля при перемещении элементарного электрического заряда (заряда, равного заряду электрона) при прохождении им разности потенциалов в 1 В. Так как заряд электрона равен 1,6•l0-19 Кл, то 1 эВ = 1,6•10-19 Дж.Работа выхода зависит от химической природы металлов и от чистоты их поверхности и колеблется в пределах нескольких электрон-вольт (например, у калия Л=2,2 эВ, у платины A = б,3 эВ). Подобрав определенным образом покрытие поверхности, можно значительно уменьшить paботу выхода. Например, если нанести на поверхность вольфрама (А =4,5 эВ) слой оксида щелочно-земельного металла (Са, Sr, Ba), то работа выхода снижается до 2 эВ.Эмиссионные явления и их применениеЕсли сообщить электронам в металлах энергию, необходимую для преодоления работы выхода, то часть электронов может покинуть металл, в результате чего наблюдается явление испускания электронов, или электронной эмиссии. В зависимости от способа сообщения электронам энергии различают термоэлектронную, фотоэлектронную, вторичную электронную и автоэлектронную эмиссии.Термоэлектронная эмиссия — это испускание электронов нагретыми металлами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергии) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет и явление термоэлектронной эмиссии становится заметным. Явление термоэлектронной эмиссии используется в приборах, в которых необходимо получить поток электронов в вакууме, например в электронных лампах, рентгеновских трубках, электронных микроскопах и т. д. Электронные лампы широко применяются в электро- и радиотехнике, автоматике и телемеханике для выпрямления переменных токов, Фотоэлектронная эмиссия — это эмиссия электронов из металла под действием света, а также коротковолнового электромагнитного излучения (например, рентгеновского). Основные закономерности этого явления будут разобраны при рассмотрении фотоэлектрического эффекта.Вторичная электронная эмиссия — это испускание электронов поверхностью металлов, полупроводников или диэлектриков при бомбардировке их пучком электронов. Вторичный электронный поток состоит из электронов, отраженных поверхностью (упруго и неупруго отраженные электроны), и «истинно» вторичных электронов — электронов, выбитых из металла, полупроводника или диэлектрика первичными электронами.Отношение числа вторичных электронов n2 к числу первичных п1, вызвавших эмиссию, называется коэффициентом вторичной электронной эмиссии: =n2/n1. Коэффициент б зависит от природы материала поверхности, энергии бомбардирующих частиц и их угла падения на поверхность. У полупроводников и диэлектриков б больше, чем у металлов.
30. Самостоятельный газовый и несамостоятельній.
30 Несамостоятельным газовым разрядом называется такой разряд, который, возникнув при наличии электрического поля, может существовать только под действием внешнего ионизатора.
Ионизация газов может происходить под действием различных ионизаторов: сильный нагрев (столкновения быстрых молекул становятся настолько сильными, что они разбиваются на ионы), короткое электромагнитное излучение (ультрафиолетовое, рентгеновское и -излучения), корпускулярное излучение (потоки электронов, протонов, -частиц) и т. д. Для того чтобы выбить из молекулы (атома) один электрон, необходимо затратить определенную энергию, называемую энергией ионизации, значения которой для атомов различных веществ лежат в пределах 4—25 эВ.
Одновременно с процессом ионизации газа всегда идет и обратный процесс — процесс рекомбинации: положительные и отрицательные ионы, положительные ионы и электроны, встречаясь, воссоединяются между собой с образованием нейтральных атомов и молекул. Чем больше ионов возникает под действием ионизатора, тем интенсивнее идет и процесс рекомбинации.
Разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора, называется самостоятельным.
В зависимости от давления газа, конфигурации электродов, параметров внешней цепи можно говорить о четырех типах самостоятельного разряда: тлеющем, искровом, дуговом и коронном.