
- •Раздел 1 Теоретическая механика
- •Раздел 2. Сопротивление материалов
- •Раздел 3. Теория механизмов и машин
- •Раздел 4. Детали машин
- •Введение
- •Раздел 1 Теоретическая механика Лекция 1
- •Основы статики теоретической механики.
- •1.1. Основные понятия и определения статики
- •1.2. Аксиомы статики
- •1.4 Соединение тел с помощью шарниров.
- •Лекция 2. Система сходящихся сил. Условия равновесия плоской системы сил
- •2.1. Система сходящихся сил
- •Условия равновесия системы сходящихся сил в алгебраической форме
- •2.2. Момент силы относительно точки
- •Относительно точки
- •2.5. Формулы для моментов силы относительно осей координат
- •2.6. Пара сил
- •2.7. Плоская система сил
- •Статически определимые и статически неопределимые задачи
- •Лекция 3 Общие принципы расчетов
- •3.1.Основные положения
- •3.2. Основные допущения в сопротивлении материалов
- •3.3. Внешние и внутренние силы. Метод сечений
- •3.4. Построение эпюр внутренних факторов для стержнем. Построение эпюр нормальных сил n
- •Лекция 4 Понятия о напряжениях. Деформации
- •4.2. Понятия о линейных и угловых деформациях тела
- •4.3. Растяжение и сжатие прямого бруса
- •4.4. Напряжения в поперечных сечениях бруса
- •4.5. Продольные и поперечные деформации. Коэффициент Пуассона
- •4.6. Коэффициент запаса прочности. Допускаемые напряжения
- •4.7. Расчет на прочность при растяжении (сжатии)
- •Лекция 5 Кручение
- •5.1. Построение эпюр крутящих моментов
- •5.2. Определение напряжений в стержнях круглого поперечного сечения. Расчет на прочность
- •5.4. Деформации и перемещения при кручении валов. Расчет на жесткость
- •Лекция 6
- •6.1. Общие понятия и определения. Виды изгибов.
- •6.2. Характер напряжений при изгибе. Определение изгибающего момента и поперечной силы
- •Лекция 7 Построение эпюр поперечних сил и изгибающих моментов.
- •7.1. Зависимость между изгибающим моментом, поперечной
- •Силой и интенсивностью распределенной нагрузки.
- •Лекция 8 Нормальных напряжений при чистом изгибе балки
- •8.1. Определение нормальных напряжений при чистом изгибе балки
- •8.2. Расчет на прочность по нормальным напряжениям
- •8.3. Рациональные формы сечения балок.
- •9.1. Машина, классификация
- •9.2. Структурный анализ механизмов
- •9.3. Классификация механизмов
- •9. 4. Кулачковые механизмы
- •Классификация кулачковых механизмов
- •9.5. Зубчатые механизмы
- •9.6. Структурный анализ и синтез механизмов.
- •Структурные схемы механизмов
- •Лекция 10 Кинематический анализ плоского механизма. План скоростей и ускорений. Кинематическое исследование механизмов.
- •10.1. Определение скоростей. Понятие о теореме подобия для определения скоростей отдельных точек звеньев.
- •Лекция 11
- •11.1. Механизмы передач с неподвижными осями.
- •11.2. Механизмы передач с подвижными осями
- •12.1. Классификация деталей машин
- •12.2. Механические передачи
- •12.2.2. Повреждения эвольвентных зубьев
- •12.2.3. Классификация зубчатых передач.
- •12.2.4. Материал и термообработка шестерен
- •12.2.5. Прямозубая цилиндрическая передача Достоинства
- •Недостатки
- •12.2.6. Основные геометрические размеры прямозубой цилиндрической передачи
- •12.2.7. Разложение сил в прямозубой цилиндрической передаче
- •12.2.8. Порядок расчета закрытой прямозубой цилиндрической передачи
- •12.2.9. Порядок расчета открытой прямозубой передачи
- •Лекция 13 Косозубая цилиндрическая передача
- •13.1. Разложение сил в косозубой передаче
- •13.2. Проектный расчет открытой косозубой цилиндрической передачи.
- •13.3. Особенности расчета косозубых цилиндрических шестерен
- •13.4. Особенности расчета косозубой цилиндрической передачи по изгибным напряжениям.
- •13.5. Шевронная передача
- •Лекция 14 Коническая зубчатая передача
- •14.2. Проектный расчёт открытой конической прямозубой передачи
- •Лекция 15 Червячная передача
- •Лекция 16 Редукторы, классификация, схемы.
- •16.1. Зубчатые редукторы
- •16.2. Червячные редукторы
- •Лекция 17 Валы. Материал . Предварительный и уточненный расчет валов
- •17.1. Материал валов
- •17.2. Расчет валов на прочность
- •17.3. Предварительный расчет валов
- •17.4. Уточненный расчет валов
- •17.5. Определение допускаемых напряжений изгиба в валах
- •17.6. Расчет валов на жесткость
- •Лекция 18 Подшипники. Классификация, область применения, расчет на долговечность
- •18.1. Подшипники скольжения
- •Конструктивные типы подшипников скольжения
- •18.2. Подшипники качения
- •19. Список использованной литературы
16.1. Зубчатые редукторы
Цилиндрические редукторы благодаря широкому диапазону передаваемых мощностей, долговечности, простоте изготовления и обслуживания получили широкое распространение в машиностроении.
Одноступенчатые редукторы типа Ц (см. рис. 16.1, а ) используют при передаточном числе u<8. Зацепление в большинстве случаев косозубое.
Двухступенчатые редукторы выполняют по развернутой (см. рис. 16.1, б, в), раздвоенной (см. рис. 16.1, г) и соосной (см. рис. 16.1, д) схемам.
Наиболее распространены цилиндрические двухступенчатые горизонтальные редукторы типа Ц2 (см. рис. 16.1, б), выполненные по развернутой схеме. Они технологичны, имеют малую ширину. Недостатком этих редукторов является повышенная неравномерность нагрузки по длине зуба из-за несимметричного расположения колес относительно опор.
Для улучшения условий работы зубчатых колес применяют редукторы с раздвоенной быстроходной ступенью типа Ц2Ш (см. рис. 16.1, г), которые легче, но шире.
Соосные редукторы типа Ц2С (см. рис. 16.1, д) применяют для уменьшения длины корпуса. Они проще по конструкции и менее трудоемки в изготовлении.
Цилиндрические трехступенчатые редукторы выполняют по развернутой или раздвоенной схеме при передаточном числе u<250.
Конические редукторы типа К (см. рис. 16.1, е) выполняют с круговыми зубьями при передаточном числе u≤5.
Коническо-цилиндрические редукторы (см. рис. 16.1, ж) независимо от числа ступеней выполняют с быстроходной конической ступенью.
Планетарные редукторы позволяют получить большое передаточное число при малых габаритах. По конструкции они сложнее редукторов, описанных ранее. В редукторостроении наиболее распространен простой планетарный зубчатый редуктор. Последовательным соединением нескольких простых планетарных рядов можно получить редуктор с требуемым передаточным числом. Особенно эффективно применение планетарных мотор-редукторов.
Волновые редукторы являются разновидностью планетарных. В редукторостроении наиболее распространены двухволновые передачи с неподвижным жестким корпусом. Они широко применяются в робототехнике.
В любой отрасли машиностроения, приборостроения, на транспорте зубчатые передачи находят широкое применение: автомобили, тракторы, самолеты, турбоэлектроходы, станки, часы, измерительные приборы и т.д.
16.2. Червячные редукторы
Основное распространение имеют одноступенчатые редукторы типа Ч (см. рис. 16.1, и — л) с передаточным числом и = 8...80.
Для приводов тихоходных машин применяют червячно-цилиндрические типа ЧЦ (см. рис. 16.1, з) или двухступенчатые типа 42 (см. рис. 16.1, м) редукторы, в которых передаточное число достигает u≤4000.
Основными параметрами всех редукторов являются: передаточное число, коэффициенты ширины колес, модули зацепления, углы наклона зубьев, коэффициенты диаметров червяков.
Тип редуктора, параметры и конструкцию определяют в зависимости от его места в силовой цепи привода машины, передаваемой мощности и угловой скорости, назначения машины и условий эксплуатации. Необходимо стремиться использовать стандартные редукторы, которые изготовляются на специализированных заводах и потому дешевле.
Цилиндрические редукторы нужно предпочитать другим ввиду более высоких значений к.п.д. При больших передаточных числах используют червячные или глобоидные редукторы. При ограниченности места предпочтение отдают мотор-редукторам.
Корпуса (картеры) редукторов должны быть прочными и жесткими. Их отливают из серого чугуна. Для удобства сборки корпуса редукторов выполняют разъемными.
Опорами валов редукторов, как правило, являются подшипники качения.
Корпуса (картеры) редукторов должны быть прочными и жесткими. Внешние очертания формируют плоскостями с внутренним расположением бобышек, фланцев и ребер. Корпуса отливают из серого чугуна, реже из алюминиевых сплавов. Для удобства сборки корпуса редукторов выполняют разъемными по плоскости расположения осей валов.
Опорами валов редукторов являются подшипники качения.
Смазывание зубчатых или червячных передач редукторов применяют в целях уменьшения изнашивания, отвода тепла и продуктов износа контакти-рующих поверхностей, защиты от коррозии и снижения шума и вибраций. В большинстве случаев смазывание зацепления осуществляют погружением в масляную ванну, а подшипников — разбрызгиванием (масляным туманом).
При окружной скорости колеса свыше 3 м/с происходит интенсивное разбрыз-гивание масла внутри корпуса и образование масляного тумана,обеспечивающего смазывание всех других зацеплений и подшипников качения. В корпус редуктора заливают масло из расчета 0,4...0,7 л на 1 кВт передаваемой мощности, при этом колесо или червяк должны погружаться в масло на глубину не менее высоты зуба или витка.
Во избежание больших гидравлических потерь окружная скорость погружаемой детали не должна превышать 12,5 м/с. Сорт масла назначают в зависимости от условий и режима работы. Вязкость масла должна быть тем выше, чем больше значения контактных напряжений и меньше значение окружной скорости.
В процессе эксплуатации смазочные масла постепенно теряют свойства. Периодичность замены масла устанавливают в зависимости от условий работы.