
- •1. Понятие о минерале. Основные задачи минералогии. История классификации минералов. Принципы, лежащие в основе современной классификации минералов.
- •2.Кристаллические и аморфные вещества. Кристаллическая структура минералов. Типы структур по характеру сочетания структурных единиц.
- •3.Плотнейшие шаровые упаковки. Шариковые и полиэдрические модели представления структуры минералов. Понятия о координации, координационном числе и координационном полиэдре.
- •4.Типы химической связи в минералах. Примеры.
- •7.Твердые растворы. Распад твердых растворов. Интерметаллические соединения.
- •9.Графические способы представления химических составов минералов. Изображение бинарных и тройных систем
- •10.Полиморфизм и политипия. Типы полиморфных переходов. Примеры
- •12. Оптические свойства минералов: прозрачность, цвет и природа окраски, преломление света и блеск, люминесценция. Диагностическое и генетическое значение оптических свойств минералов.
- •14. Понятия о парагенезисе и минеральной ассоциации. Примеры.
- •15.Кристаллохимическая классификация силикатов. Зависимость диагностических свойств силикатов и алюмосиликатов от кристаллической структуры и химического состава.
- •16.Силикаты с островной структурой (орто-, диорто-, кольцевые силикаты). Химическая и структурная характеристика, общие свойства.
- •17. Островные силикаты без добавочных анионов. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •18. Островные силикаты с добавочными анионами. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •19.Кольцевые силикаты. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •20. Силикаты с цепочечной структурой. Пироксены и пироксеноиды. Химическая и структурная характеристика, общие свойства.
- •21.Магнезиально-железистые пироксены. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •22. Кальциевые и натровые пироксены. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •23. Силикаты с ленточной структурой. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •24. Силикаты и алюмосиликаты со слоистой структурой. Химическая и структурная характеристика, общие свойства.
- •25. Минералы группы слюд. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование. Группа слюд.
- •26.Алюмосиликаты с каркасной структурой. Химическая и структурная характеристика, генезис, общие свойства.
- •27.Минералы группы полевых шпатов. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •28.Минералы группы цеолитов. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •29. Самородные элементы. Краткая химическая и структурная характеристика. Общие свойства самородных металлов и неметаллов.
- •31. Полиморфные модификации углерода. Графит и алмаз: химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •32.Сульфиды и их аналоги. Основы классификации, краткая химическая и структурная характеристика, общие свойства.
- •33. Простые сульфиды. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •34. Дисульфиды и их аналоги. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •35. Окислы и гидроокислы. Основы классификации, краткая химическая и структурная характеристика.
- •36. Простые окислы. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •37. Полиморфные модификации SiO2. Кварц, его разновидности, химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •38. Сложные окислы. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •39. Гидроокислы. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •40. Карбонаты и нитраты. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование. Морфотропия в карбонатах.
- •41. Сульфаты. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •42. Фосфаты, арсенаты, ванадаты. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •43. Вольфраматы, молибдаты, хроматы. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •44. Бораты. Принципы классификации, химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •45. Галогениды. Химическая и структурная характеристика, диагностические свойства, генезис, практическое использование.
- •46.Классификация процессов минералообразования.
- •47. Магматический процесс минералообразования. Краткая характеристика, минеральные ассоциации. Ряд Боуэна.
- •48. Пегматитовый процесс минералообразования. Краткая характеристика, минеральные ассоциации.
- •49.Метасоматические процессы минералообразования. Краткая характеристика, минеральные ассоциации.
- •Гидротермальный процесс минералообразования. Краткая характеристика, минеральные ассоциации.
- •51.Осадочный процесс минералообразования. Краткая характеристика, минеральные ассоциации.
- •52. Минералообразование при процессах выветривания магматических горных пород и гидротермальных рудных жил. Краткая характеристика, минеральные ассоциации.
- •53. Метаморфический процесс минералообразования (в том числе импактный). Краткая характеристика, минеральные ассоциации.
- •54. Типоморфизм минералов. Примеры зависимости химического состава, морфологии и физических свойств минералов от условий их образования.
1. Понятие о минерале. Основные задачи минералогии. История классификации минералов. Принципы, лежащие в основе современной классификации минералов.
Минера́л — природное тело с определённым химическим составом и упорядоченной атомной структурой (кристаллической структурой), образующееся в результате природных физико-химических процессов и обладающее определённым химическим составом и физическими свойствами.
Главными задачами минералогии являются: 1) всестороннее изучение и более глубокое познание физических и химических свойств минералов во взаимной связи с их химическим составом и кристаллическим строением с целью практического использования их в различных отраслях промышленности и выявления новых видов минерального сырья; 2) изучение закономерностей сочетания минералов и последовательности образования минеральных комплексов в рудах и горных породах с целью выяснения условий возникновения минералов и истории процессов минералообразования (генезиса), а также использования этих закономерностей при поисках и разведках различных месторождений полезных ископаемых.
Классификация: Авиценна — Ибн Сина, уроженец Бухары дал классификацию известных в то время минералов, разделив их на четыре класса: 1) камни и земли, 2) горючие или сернистые ископаемые; 3) соли и 4) металлы. Георгий Агрикола. Создал классификацию минералов, которая немногим отличается от классификации Авиценны, но проработана гораздо глубже. Минеральные образования Агрикола делил на горючие ископаемые, земли, соли, драгоценные камни, металлы и минеральные смеси. Но рациональная классификация минералов оказалась возможной только после появления периодической системы химических элементов.
В основу современной классификации минералов положены два основных признака: химический состав и структура. Все минералы делят на группы: 1.самородные элементы; 2.сульфиды (сернистые соединения); 3.галогениды (галоидные соединения); 4.оксиды и гидроксиды; 5.соли кислородных кислот (силикаты, нитраты, карбонаты, сульфаты, хроматы, молибдаты и вольфраматы, фосфаты, арсенаты и ванадаты, бораты).
2.Кристаллические и аморфные вещества. Кристаллическая структура минералов. Типы структур по характеру сочетания структурных единиц.
Любое вещество неорганической природы в зависимости от температуры и давления может находиться в любом агрегатном состоянии, а при изменении этих факторов переходит из одного состояния в другое. Большинство минералов представлено кристаллическими веществами, т. е. веществами, обладающими кристаллической структурой. Каждое кристаллическое вещество имеет определенную температуру плавления. Аморфные вещества часто получаются при затвердевании расплавленных вязких масс, особенно когда охлаждение расплава происходит очень быстро. Переход аморфных веществ в кристаллические массы может произойти лишь при продолжительном выдерживании их в размягченном состоянии при температуре, близкой к точке плавления.
Кристаллическая структура минерала - внутреннее устройство его кристаллов, способ взаимного расположения составляющих их атомов, ионов или молекул. Кристаллическая структура описывается параметрами кристаллической решетки и её дефектов. Она определяет свойства и габитус, внешний облик кристаллов.
Типы структур. Координационный - атомы распределены равномерно, не образуя никаких конечных или бесконечных группировок. Это структуры гомодесмические (NaCl, алмаз, металлы). Островной - атомы собраны в отдельные конечные группировки, внутри которых связи более сильные (расстояния между атомами мало), а между этими группами связи слабые (расстояние между ними увеличивается). Это структуры гетеродесмические. Островные структурные группировки могут быть валентно-насыщенными (сера), катионными и анионными (карбонаты). В последнем случае связь внутри группировки - ковалентная, а связь между катионом и анионной группировкой - ионная. Цепочечный - ковалентно-связанные группировки атомов, соединяясь между собой (полимеризуясь), могут образовывать бесконечные вытянутые в одном направлении нейтральные или валентно-ненасыщенные анионные цепи, связь между которыми может быть остаточной (ван-дер-ваальсовой), водородной или через катионы. Такой структурный мотив наблюдается во многих силикатах. Слоистый - бесконечные ориентированные в одной плоскости валентно-нейтральные пакеты из прочно связанных атомов одного (графит) или разного сорта (гидроксиды) разделены на слои, связь между которыми - остаточная (ван-дер-ваальсова) или водородная. Каркасный - трехмерная связь из атомных группировок, соединенных вершинами, внутри которой имеются большие пустоты. В отличие от координационных структур атомы распределены в пространстве неравномерно, даже если каркас нейтрален (кварц) и между атомами преобладает один тип связи.