
- •7. Вычитание в двоичной системе
- •При представлении с фиксированной запятой
- •20. Форматы данных
- •21. Представление числа в форме с плавающей запятой.
- •23. Форматы данных
- •Расширенная форма Бэкуса-Наура
- •25. Технология структурного программирования при разработке серьезных программных комплексов, основана на следующих принципах:
- •Типы интерпретаторов
- •Структура компилятора
- •Синтаксис:
- •38. Типы данных
- •Арифметические операции
- •Логические операции
- •43. С#Операции отношения:
- •Pascal Операции отношения
- •44. C# Операция присваивания
- •45. Стандартные процедуры и функции
- •46. 1) Класс Math:
- •Заголовок программы
- •Раздел меток (label)
- •Раздел констант (const)
- •Раздел типов (type)
- •Раздел переменных (var)
- •Раздел процедур и функций
- •Раздел действий (операторов)
- •Операторы ввода данных
- •Операторы вывода данных
- •54. Оператор case (оператор выбора)
- •55. Оператор if
- •Оператор switch
- •59. Оператор goto
- •Оператор return
- •Оператор throw
- •Исключительные ситуации
- •61. Класс
- •62. Состав классов
- •Модификаторы параметров методов
- •67. Статические конструкторы
- •68. Статические классы
- •Двумерные массивы
- •Создание массивов
- •Копирование массивов
- •Сортировка и поиск
Расширенная форма Бэкуса-Наура
Как уже говорилось, отсутствие в нотации формальных грамматик (и БНФ) средств явного задания повторений создает ряд трудностей. Во-первых, определения оказываются сложными для понимания, недостаточно наглядными из-за обилия рекурсий. Во-вторых, возникают проблемы с тем, что грамматики, дающие подходя- щие семантические деревья, оказываются леворекурсивными. При описании Модулы-2 и Оберона Н. Вирт использовал расширенную Бэкуса-Наура форму (РБНФ). Главные модификации касаются введения скобок { и} для повторений, а [ и ] — для обозначения необязательного вхождения цепочек терминалов и нетерминалов в правые части правил. Соглашения относительно обозначений терминалов и нетерминалов также изменены, что не столь принципиально. В дальнейшем мы будем пользоваться именно РБНФ. Вот как она определяется в спецификации Оберона-2: Варианты разделяются знаком |. Квадратные скобки [ и ] означают необязательность записанного внутри них выражения, а фигурные скобки { и } означают его повторение (возможно, 0 раз). Нетерминальные символы начинаются с заглавной буквы (например, Оператор). Терминальные символы или начинаются малой буквой (например, идент), или записываются целиком заглавными буквами (например, begin), или заключаются в кавычки (например, ":="). К этому следует добавить, что в роли знака «есть по определению» в РБНФ используется «=», а каждое правило заканчивается точкой. Вот так может быть определен синтаксис идентификатора (имени) с помощью РБНФ:
Имя = Буква { Буква | Цифра }.
Являясь метаязыком, РБНФ должна быть пригодна для описания языков, имеющих практический интерес. В том числе с помощью РБНФ может быть определен и синтаксис самой РБНФ:
Синтаксис = { Правило }.
Правило = Имя "=" Выражение
Выражение = Вариант { "I" Вариант }.
Вариант - Элемент { Элемент }.
Элемент = Имя | Цепочка | "{" Выражение "}" |
"[" Выражение "]" | "{" Выражение "}".
Цепочка = "'" { символ ) "'" | '"'{ символ } '"'.
В этих определениях не сделано различий между именами, обозначающими терминалы и нетерминалы, хотя сформулировать это на РБНФ было бы несложно. Различение имен вынесено за рамки синтаксиса и может быть специфицировано (и специфицируется) отдельно. Подобным же образом часто поступают при определении языков программирования.
25. Технология структурного программирования при разработке серьезных программных комплексов, основана на следующих принципах:
– программирование должно осуществляться сверху вниз;
– весь проект должен быть разбит на модули (подпрограммы) с одним входом и одним выходом;
– подпрограмма должна допускать только три основные структуры – последовательное выполнение, ветвление (if, case) и повторение (for, while, repeat).
– недопустим оператор передачи управления в любую точку программы (goto);
– документация должна создаваться одновременно с программированием в виде комментариев к программе.
Структурное программирование эффективно используется для решения различных математических задач, имеющих алгоритмический характер.
Структу́рное программи́рование — методология разработки программного обеспечения, в основе которой лежит представление программы в виде иерархической структуры блоков. Предложена в 70-х годах XX века Э. Дейкстрой, разработана и дополнена Н. Виртом.
В соответствии с данной методологией
Любая программа представляет собой структуру, построенную из трёх типов базовых конструкций:
последовательное исполнение — однократное выполнение операций в том порядке, в котором они записаны в тексте программы;
ветвление — однократное выполнение одной из двух или более операций, в зависимости от выполнения некоторого заданного условия;
цикл — многократное исполнение одной и той же операции до тех пор, пока выполняется некоторое заданное условие (условие продолжения цикла).
В программе базовые конструкции могут быть вложены друг в друга произвольным образом, но никаких других средств управления последовательностью выполнения операций не предусматривается.
Повторяющиеся фрагменты программы (либо не повторяющиеся, но представляющие собой логически целостные вычислительные блоки) могут оформляться в виде т. н. подпрограмм (процедур или функций). В этом случае в тексте основной программы, вместо помещённого в подпрограмму фрагмента, вставляется инструкция вызова подпрограммы. При выполнении такой инструкции выполняется вызванная подпрограмма, после чего исполнение программы продолжается с инструкции, следующей за командой вызова подпрограммы.
Разработка программы ведётся пошагово, методом «сверху вниз».
Сначала пишется текст основной программы, в котором, вместо каждого связного логического фрагмента текста, вставляется вызов подпрограммы, которая будет выполнять этот фрагмент. Вместо настоящих, работающих подпрограмм, в программу вставляются «заглушки», которые ничего не делают. Полученная программа проверяется и отлаживается. После того, как программист убедится, что подпрограммы вызываются в правильной последовательности (то есть общая структура программы верна), подпрограммы-заглушки последовательно заменяются на реально работающие, причём разработка каждой подпрограммы ведётся тем же методом, что и основной программы. Разработка заканчивается тогда, когда не останется ни одной «затычки», которая не была бы удалена. Такая последовательность гарантирует, что на каждом этапе разработки программист одновременно имеет дело с обозримым и понятным ему множеством фрагментов, и может быть уверен, что общая структура всех более высоких уровней программы верна. При сопровождении и внесении изменений в программу выясняется, в какие именно процедуры нужно внести изменения, и они вносятся, не затрагивая части программы, непосредственно не связанные с ними. Это позволяет гарантировать, что при внесении изменений и исправлении ошибок не выйдет из строя какая-то часть программы, находящаяся в данный момент вне зоны внимания программиста.
Теорема о структурном программировании:
Основная статья: Теорема Бома-Якопини
Любую схему алгоритма можно представить в виде композиции вложенных блоков begin и end, условных операторов if, then, else, циклов с предусловием (while) и может быть дополнительных логических переменных (флагов). Эта теорема была сформулирована итальянскими математиками К. Бомом и Дж. Якопини в 1966 году и говорит нам о том, как можно избежать использования оператора перехода goto.
26. Функциона́льное программи́рование — раздел дискретной математики и парадигма программирования, в которой процесс вычислениятрактуется как вычисление значений функций в математическом понимании последних (в отличие от функций как подпрограмм в процедурном программировании).
Противопоставляется парадигме императивного программирования, которая описывает процесс вычислений как последовательное изменениесостояний (в значении, подобном таковому в теории автоматов). При необходимости, в функциональном программировании вся совокупность последовательных состояний вычислительного процесса представляется явным образом, например как список.
Функциональное программирование предполагает обходиться вычислением результатов функций от исходных данных и результатов других функций, и не предполагает явного хранения состояния программы. Соответственно, не предполагает оно и изменяемость этого состояния (в отличие от императивного, где одной из базовых концепций является переменная, хранящая своё значение и позволяющая менять его по мере выполнения алгоритма).
На практике отличие математической функции от понятия «функции» в императивном программировании заключается в том, что императивные функции могут опираться не только на аргументы, но и на состояние внешних по отношению к функции переменных, а также иметь побочные эффекты и менять состояние внешних переменных. Таким образом, в императивном программировании при вызове одной и той же функции с одинаковыми параметрами, но на разных этапах выполнения алгоритма, можно получить разные данные на выходе из-за влияния на функцию состояния переменных. А в функциональном языке при вызове функции с одними и теми же аргументами мы всегда получим одинаковый результат: выходные данные зависят только от входных. Это позволяет средам выполнения программ на функциональных языках кешироватьрезультаты функций и вызывать их в порядке, не определяемом алгоритмом и распараллеливать их без каких-либо дополнительных действий со стороны программиста (см.ниже Чистые функции)
λ-исчисления являются основой для функционального программирования, многие функциональные языки можно рассматривать как «надстройку» над ними[1].
27. Параллельные вычисления — такой способ организации компьютерных вычислений, при котором программы разрабатываются как набор взаимодействующих вычислительных процессов, работающих параллельно (одновременно). Термин охватывает совокупность вопросов параллелизма в программировании, а также создание эффективно действующихаппаратных реализаций. Теория параллельных вычислений составляет раздел прикладной теории алгоритмов.[1]
Существуют различные способы реализации параллельных вычислений. Например, каждый вычислительный процесс может быть реализован в виде процесса операционной системы, либо же вычислительные процессы могут представлять собой набор потоков выполнения внутри одного процесса ОС. Параллельные программы могут физически исполняться либо последовательно на единственном процессоре — перемежая по очереди шаги выполнения каждого вычислительного процесса, либо параллельно — выделяя каждому вычислительному процессу один или несколько процессоров (находящихся рядом или распределённых в компьютерную сеть).
Основная сложность при проектировании параллельных программ — обеспечить правильную последовательность взаимодействий между различными вычислительными процессами, а также координацию ресурсов, разделяемых между процессами.
28. Объектно-ориентированное программирование - это подход к
разработке программного обеспечения, основанный на объектах, а не
на процедурах. Этот подход позволяет максимизировать принципы мо-
дульности и "сокрытия информации". Объектно-ориентированное прог-
раммирование базируется на связывании или инкапсуляции структур
данных и процедуры, которая работает с данными в структуре, с мо-
дулем.
29. Интерпрета́тор — программа (разновидность транслятора) или аппаратное средство, выполняющее интерпретацию.[1]
Интерпрета́ция — пооператорный (покомандный, построчный) анализ, обработка и тут же выполнение исходной программы или запроса (в отличие от компиляции, при которой программа транслируется без её выполнения)