
- •9. Головна задача механіки. Систе́ма відліку. Система координат
- •10. Матеріа́льна то́чка. Визначення положення мт у просторі, радіус-вектор.
- •11.Кінематичні рівняння поступального і обертального рухів.
- •12 Основні характеристики руху. Миттєва швидкість тіла. Середня швидкість. Тангенціальне і нормальне(доцентрове) прискорення
- •13. Охарактеризувати види руху та навести відповідні рівняння
- •15.Маса. Зв’язок маси тіла з його вагою. Одиниці виміру маси та ваги тіла.
- •16. Маса як мірило інертності тіла. Другий закон Ньютона.
- •17.Терези. Типи терезів та вимірювання ваги.
- •18. Густина, як фізична характеристика речовини. Методи визначення густини.
- •19. Інерціальні системи. Перший закон Ньютона.
- •20.Сила. Однини ці вимірювання сили. Прояви дії сили. Другий закон Ньютона.
- •21.Центр інерції механічної системи.Особливості руху центра інерції замкненої механічної системи.
- •22.Імпульс мт та повний імпульс механічної ситеми. Закон збереження імпульсу.
- •23. Третій закон Ньютона: закон дії та протидії
- •24. Робота та потенціальна енергія. Зв'язок сили з потенціальною енергією матер. Точки. Розрахунок роботи.
- •25.Момент інерції твердого тіла. Мотенти інерції тіл найпростішої форми.
- •26. Теорема Штейнера
- •26. Рівняння обертального руху мт
- •27.Момент сили
- •28.Правило важелів Архімеда
- •29.Дисипативна енергія
- •30.Пружна деформація. Закон Гука. Модуль Юнга. Енергія деформованої пружини.
- •31.Робота та потенціальна енергія. Зв'язок сили з потенціальною енергією мт . Розрахунок роботи.
- •32.Закон збереження енергії.
- •33.Однорідне силове поле. Рух мт в однорідному силовому полі.
- •34.Сила тертя. Сухе та вязке тертя. Рух твердого тіла по похилій площині.
- •35.Гідростатика.Фізичні властивості рідин.
- •36. Закон паскаля:
- •37. Закон архімеда
- •38. Принцип дії гідравлічного преса
- •39. Гідродинаміка. Теорема про неперервність течії
- •40. Рівняння Бернуллі та його наслідки
- •41.Рух реальної рідини. Сила внутрішнього тертя, коефіцієнт в’язкості.
- •42. Ламіна́рна та турбулентна течія. Число Рейнольдса. Умови ламінарної течії
- •43. Теорія подібності та її використання у фізико-технологічних процесах
- •44.Предмет дослідження молекулярної фізии. Будова речовини. Визначенння вуглецевих одиниць.
- •45.Моль речовини. Число Авогадро.Характерний розмір молекул.
- •46.Рівняння Клапейрона
- •47.Ізопроцеси. Закон Бойля-Маріотта
- •48. Зако́н Гей-Люсса́ка
- •49. Закон Шарля
- •50. Парціальний тиск. Закон Дальтона
- •51. Молекулярно-кінетична теорія газового тиску.
- •52. Імовірність розподілу молекул за швидкостями.
- •53. Теорія хімічної будови Бутлерова
- •54.Структурна і просторова ізомерія.Фізичні методи визначенння структури молекул.
- •55.Основні типи молекулярних зв’язків – іонний та ковалентний. Квантово-механічне пояснення ковалентного зв’язку.
- •56.Сили міжмолекулярної взаємодії. Сили Ван-дер-Вальса. Ізотерми Ван-дер-Вальса.
- •57. Явище переносу в газах
- •58. Нульове начало термодинаміки.
- •59.Внутрішня енергія ідеального газу.
- •60.Перший початок термодинаміки. Робота газу при сталому тиску.
- •61.Теплоємність газу за сталого об’єму та сталого тиску.
- •62.Закон Дюлонга та Пті.
- •63.Адіабатичний процес. Рівняння адіабати.
- •64.Цикл Карно. Коефіцієнт корисної дії теплової машини.
- •65.Теплові властивості реальних середовищ. Температурна діаграма процесу нагрівання речовини.
- •66.Питома теплота плавлення та пароутворення речовини.
- •67. Робота теплових двигунів, холодильників.
- •69. Третє начало термодинаміки. Температурна шкала.
- •70.Пояснити причини утворення поверхневого шару рідини.
- •71.Сила поверхневого натягу.
- •72.Силове й енергетичне тлумачення коефіцієнту поверхневого натягу рідини.
- •73.Капілярні явища. Явище змочування і незмочування.
- •74.Вивести формулу розрахунку висоти підняття рідини в капілярі.
- •75.Формула Лапласа і її характеристика.
- •76.Поверхнеко активні(пар) і поверхнево неактивні речовини. Їх властивості і характеристика.
- •77.Рідкі кристали. Характеристика .Основні властивості , використання.
- •78.Полімери- загальна характеристика речовини, її використання.
- •79. Пояснити сутність фазових перходів першого та другого роду. Метастабільного стану.
- •81. Види блиску та їх характеристика
- •82.Електризація тіл, два роди зарядів.
- •83.Поле точкового заряду. Силові лінії електричного поля. Геометрична інтерпретація полів силовими лініями.
- •84.Дискретінсть заряду, закон збереження заряду.
- •85. Закон Кулона
- •86. Напруженість електростатичного поля. Принцип суперпозиції електростатичного поля.
- •87. Електричний диполь. Дипольний момент. Поле диполя.
- •88. Теорема Гауссата її застосування до тіл простої геометричної форми.
- •89. Робота електростатичного поля з переміщення одиничного заряду
- •90. Потенціал. Різниця потенціалів. Еквіпотенціальні поверхні. Одиниця вимірювання потенціалу.
- •91. Поведінка провідників в електростатичному полі. Електроємність провідників. Одиниці вимірювання електроємності.
- •92.Конденсатори. Ємність плаского, сферичного конденсаторів.
- •93. Паралельне та послідовне з’єднання конденсаторів
- •94.Енергія плоского конденсатора
- •95. Дослід Міллікена-Йоффе
- •96.Класифікація матеріалів за електричними властивостями. Провіднки,діелектрики, напівпровідники та надпровідники.
- •97.Електричний диполь. Дипольний момент. Поле диполя.
- •98.Теорема Гауса
- •99.Полярні і неполярні молекули. Поляризація речовини.
- •100.Вплив речовини діелектрика на електричне поле.
- •101.Основна задача електростатики
- •102.П'єзоелектрики, сегнетоелектрики, піроелектрики.
- •103.Робота, енергія, об’ємна густина енергії.
- •104.Постійний електричний струм.Середня швидкість спрямованого руху електронів.
- •Локальна форма закону Ома
- •105.Провідність та питомий опір речовини
- •106. Електроопір лінійних провідників.Закон Ома для ділянки кола.
- •107.Паралельне та послідовне з’єднання резисторів
- •108.Перша та друге правило Кірхгофа.
- •111.Сторонні сили. Електрорушійна сила
- •112.Робота, потужність електричного струму. Закон Джоуля-Ленца.
- •113.Електричний струм у металах
- •114.Класична електронна теорія металів.
- •115.Квантова теорія металів.
36. Закон паскаля:
тиск у будь-якій точці рідини або газу, які перебувають у спокої, однаковий в усіх напрямках і передається в усіх напрямках однаково.
37. Закон архімеда
на будь-яке тіло, занурене в рідину або газ, діє виштовхувальна сила, яка дорівнює вазі витисненої даним тілом рідини (газу) і за напрямом протилежна їй і прикладена у центрі мас витісненого об'єму рідини. Згідно із законом Архімеда вага всякого тіла в повітрі менша за вагу його в пустоті на величину, рівну вазі витісненого повітря.
Формула сили Архімеда
де
g - прискорення вільного падіння,
- густина рідини, V - витіснений об'єм.
38. Принцип дії гідравлічного преса
Гідравлі́чний прес — це гідравлічна машина, що служить для пресування (стискування).
Принцип дії
Закон Паскаля дозволяє пояснити дію гідравлічної машини. Це машини, дія яких заснована на законах руху і рівноваги рідин. Основною частиною гідравлічної машини служать два циліндри різного діаметру, забезпечені поршнями і сполучені трубкою. Простір під поршнями і трубку заповнюють рідиною (зазвичай мастилом). Висоти стовпів рідини в обох циліндрах однакові, поки на поршні не діють сили. Допустимо тепер, що F1 і F2 — сили, що діють на поршні, S1 і S2 — площі поршнів. Тиск під першим (малим) поршнем рівний F1/S1, а під другим (великим) F2/S2. За законом Паскаля тиск рідини, що в усіх точках рідини у стані спокою, однаковий, тобто F1/S1=F2/S2, звідки F2/F1=S2/S1. Отже, сила F2 в стільки раз більше сили F1, в скільки разів площа великого поршня більше площі малого.
39. Гідродинаміка. Теорема про неперервність течії
Гідродина́міка — розділ гідромеханіки про рух нестисливих рідин під дією зовнішніх сил і механічну взаємодію між рідиною й тілами при їх відносному русі.
Теорема про неперервність течії
Для нестискуваної рідини величина SV в будь-якому перерізі однієї й тієї ж трубки струменя є постійною.
40. Рівняння Бернуллі та його наслідки
Рівня́ння Берну́ллі — рівняння гідродинаміки, яке визначає зв'язок між швидкістю течії v, тиском p та висотою h певної точки в ідеальній рідині.
Для стаціонарного потоу ідеальної рідини :
Наслідки закону Бернуллі:
1.Якщо
потік горизонтальний, то рівняння
набуває вигляду:
Звідси видно, що там, де швидкість потоку більша, тиск менший і навпаки. Зокрема в трубці змінного перерізу, коли рідина переходить з ширшої частини трубки у вужчу, збільшення швидкості супроводжується зменшенням тиску.
Ця різниця тисків визначає прискорюючи силу, що діє на одиницю площі потоку рідини.
2. Значне зниження тиску в швидких струминах рідин або газів використовують для побудови водоструминних, ртутних або масляних насосів.
41.Рух реальної рідини. Сила внутрішнього тертя, коефіцієнт в’язкості.
У реальних рідин при русі одних шарів рідини відносно інших діють сили, дотичні до поверхонь дотикання шарів. Ці сили називають силами в’язкості(те саме, що і сили внутр.тертя).При переміщенні на кожний із шарів діють сили. З боку шару, швидкість якого більша, діє сила на шар швидкість якого менша. Напрям цієї сили збігається з напрямом руху рідини. З боку шару, швидкість якого менша, на шар, що рухається збільшою швидкістю, діє сила, яка напрямлена у протилежний бік від руху рідини, тобто гальмує цей шар.
Коефіцієт
в’язкості
(в’язкість)
– це коефіцієнт пропорційності
, який залежить від природи стану рідини.
Коефіцієн в’язкості чисельно дорівнює
силі, що діє на диницю площі рухомих
шарів рідини при градієнті швидкості
рівному одиниці, тобто
= [Па*с].
S- площа пластини
v - швидкість
d – відстань між пластинами
Внутрішнє тертя — властивість текучих тіл (рідин і газів) чинити опір переміщенню однієї їх частини відносно іншої. Одиниця вимірювання — пуаз.