
- •9. Головна задача механіки. Систе́ма відліку. Система координат
- •10. Матеріа́льна то́чка. Визначення положення мт у просторі, радіус-вектор.
- •11.Кінематичні рівняння поступального і обертального рухів.
- •12 Основні характеристики руху. Миттєва швидкість тіла. Середня швидкість. Тангенціальне і нормальне(доцентрове) прискорення
- •13. Охарактеризувати види руху та навести відповідні рівняння
- •15.Маса. Зв’язок маси тіла з його вагою. Одиниці виміру маси та ваги тіла.
- •16. Маса як мірило інертності тіла. Другий закон Ньютона.
- •17.Терези. Типи терезів та вимірювання ваги.
- •18. Густина, як фізична характеристика речовини. Методи визначення густини.
- •19. Інерціальні системи. Перший закон Ньютона.
- •20.Сила. Однини ці вимірювання сили. Прояви дії сили. Другий закон Ньютона.
- •21.Центр інерції механічної системи.Особливості руху центра інерції замкненої механічної системи.
- •22.Імпульс мт та повний імпульс механічної ситеми. Закон збереження імпульсу.
- •23. Третій закон Ньютона: закон дії та протидії
- •24. Робота та потенціальна енергія. Зв'язок сили з потенціальною енергією матер. Точки. Розрахунок роботи.
- •25.Момент інерції твердого тіла. Мотенти інерції тіл найпростішої форми.
- •26. Теорема Штейнера
- •26. Рівняння обертального руху мт
- •27.Момент сили
- •28.Правило важелів Архімеда
- •29.Дисипативна енергія
- •30.Пружна деформація. Закон Гука. Модуль Юнга. Енергія деформованої пружини.
- •31.Робота та потенціальна енергія. Зв'язок сили з потенціальною енергією мт . Розрахунок роботи.
- •32.Закон збереження енергії.
- •33.Однорідне силове поле. Рух мт в однорідному силовому полі.
- •34.Сила тертя. Сухе та вязке тертя. Рух твердого тіла по похилій площині.
- •35.Гідростатика.Фізичні властивості рідин.
- •36. Закон паскаля:
- •37. Закон архімеда
- •38. Принцип дії гідравлічного преса
- •39. Гідродинаміка. Теорема про неперервність течії
- •40. Рівняння Бернуллі та його наслідки
- •41.Рух реальної рідини. Сила внутрішнього тертя, коефіцієнт в’язкості.
- •42. Ламіна́рна та турбулентна течія. Число Рейнольдса. Умови ламінарної течії
- •43. Теорія подібності та її використання у фізико-технологічних процесах
- •44.Предмет дослідження молекулярної фізии. Будова речовини. Визначенння вуглецевих одиниць.
- •45.Моль речовини. Число Авогадро.Характерний розмір молекул.
- •46.Рівняння Клапейрона
- •47.Ізопроцеси. Закон Бойля-Маріотта
- •48. Зако́н Гей-Люсса́ка
- •49. Закон Шарля
- •50. Парціальний тиск. Закон Дальтона
- •51. Молекулярно-кінетична теорія газового тиску.
- •52. Імовірність розподілу молекул за швидкостями.
- •53. Теорія хімічної будови Бутлерова
- •54.Структурна і просторова ізомерія.Фізичні методи визначенння структури молекул.
- •55.Основні типи молекулярних зв’язків – іонний та ковалентний. Квантово-механічне пояснення ковалентного зв’язку.
- •56.Сили міжмолекулярної взаємодії. Сили Ван-дер-Вальса. Ізотерми Ван-дер-Вальса.
- •57. Явище переносу в газах
- •58. Нульове начало термодинаміки.
- •59.Внутрішня енергія ідеального газу.
- •60.Перший початок термодинаміки. Робота газу при сталому тиску.
- •61.Теплоємність газу за сталого об’єму та сталого тиску.
- •62.Закон Дюлонга та Пті.
- •63.Адіабатичний процес. Рівняння адіабати.
- •64.Цикл Карно. Коефіцієнт корисної дії теплової машини.
- •65.Теплові властивості реальних середовищ. Температурна діаграма процесу нагрівання речовини.
- •66.Питома теплота плавлення та пароутворення речовини.
- •67. Робота теплових двигунів, холодильників.
- •69. Третє начало термодинаміки. Температурна шкала.
- •70.Пояснити причини утворення поверхневого шару рідини.
- •71.Сила поверхневого натягу.
- •72.Силове й енергетичне тлумачення коефіцієнту поверхневого натягу рідини.
- •73.Капілярні явища. Явище змочування і незмочування.
- •74.Вивести формулу розрахунку висоти підняття рідини в капілярі.
- •75.Формула Лапласа і її характеристика.
- •76.Поверхнеко активні(пар) і поверхнево неактивні речовини. Їх властивості і характеристика.
- •77.Рідкі кристали. Характеристика .Основні властивості , використання.
- •78.Полімери- загальна характеристика речовини, її використання.
- •79. Пояснити сутність фазових перходів першого та другого роду. Метастабільного стану.
- •81. Види блиску та їх характеристика
- •82.Електризація тіл, два роди зарядів.
- •83.Поле точкового заряду. Силові лінії електричного поля. Геометрична інтерпретація полів силовими лініями.
- •84.Дискретінсть заряду, закон збереження заряду.
- •85. Закон Кулона
- •86. Напруженість електростатичного поля. Принцип суперпозиції електростатичного поля.
- •87. Електричний диполь. Дипольний момент. Поле диполя.
- •88. Теорема Гауссата її застосування до тіл простої геометричної форми.
- •89. Робота електростатичного поля з переміщення одиничного заряду
- •90. Потенціал. Різниця потенціалів. Еквіпотенціальні поверхні. Одиниця вимірювання потенціалу.
- •91. Поведінка провідників в електростатичному полі. Електроємність провідників. Одиниці вимірювання електроємності.
- •92.Конденсатори. Ємність плаского, сферичного конденсаторів.
- •93. Паралельне та послідовне з’єднання конденсаторів
- •94.Енергія плоского конденсатора
- •95. Дослід Міллікена-Йоффе
- •96.Класифікація матеріалів за електричними властивостями. Провіднки,діелектрики, напівпровідники та надпровідники.
- •97.Електричний диполь. Дипольний момент. Поле диполя.
- •98.Теорема Гауса
- •99.Полярні і неполярні молекули. Поляризація речовини.
- •100.Вплив речовини діелектрика на електричне поле.
- •101.Основна задача електростатики
- •102.П'єзоелектрики, сегнетоелектрики, піроелектрики.
- •103.Робота, енергія, об’ємна густина енергії.
- •104.Постійний електричний струм.Середня швидкість спрямованого руху електронів.
- •Локальна форма закону Ома
- •105.Провідність та питомий опір речовини
- •106. Електроопір лінійних провідників.Закон Ома для ділянки кола.
- •107.Паралельне та послідовне з’єднання резисторів
- •108.Перша та друге правило Кірхгофа.
- •111.Сторонні сили. Електрорушійна сила
- •112.Робота, потужність електричного струму. Закон Джоуля-Ленца.
- •113.Електричний струм у металах
- •114.Класична електронна теорія металів.
- •115.Квантова теорія металів.
32.Закон збереження енергії.
Закон збереження енергії : повна енергія системи, на яку діють консервативні сили, не змінюється з часом. Закон збереження енергії справедливий тільки для замкнених систем, тобто за умови відсутності зовнішніх полів чи взаємодій.
Сили взаємодії між тілами, для яких виконується закон збереження механічної енергії називаються консервативними силами.
33.Однорідне силове поле. Рух мт в однорідному силовому полі.
Однорідним називається таке електричне поле, у всіх точках якого напруженість однакова.
На заряд, поміщений в нього, у всіх точках діють однакові сили. Силові лінії однорідного поля паралельні. Абсолютно однорідного електричного поля не існує.
Рух МТ в однорідному силовому полі.
В
однорідному силовому полі на МТ діє
сила Лоренца, яка завжди
перпендикулярна до швидкості руху
частинки. Це означає, що робота сили
Лоренца завжди дорівнює нулю; отже,
абсолютне значення швидкості руху
частинки, а значить, і енергія частинки
залишаються постійними при русі. Так
як швидкість частинки u
не змінюється, то величина сили Лоренца
залишається постійною. Ця сила, будучи
перпендикулярною,до напрямку руху, є
доцентровою силою.
34.Сила тертя. Сухе та вязке тертя. Рух твердого тіла по похилій площині.
Си́ла тертя́ у фізиці — це сила, яка протидіє руху фізичного тіла, розсіюючи його механічну енергію в тепло. За своєю фізичною природою сила тертя належить до електростатичних сил і не є фундаментальним типом взаємодії. Сила тертя виникає лише в макроскопічних системах, де внаслідок хаотичного руху атомів відбувається незворотний процес розсіяння енергії макроскопічного руху складових системи в енергію мікроскопічного руху атомів та молекул.
Сила тертя завжди направлена проти вектора швидкості. Сила тертя не належить до потенціальних сил.
Коли тіло рухається в газі чи рідині, сила тертя пропорційна швидкості, при великих швидкостях — квадрату швидкості.
Сухе та в’язке тертя
Сухе тертя – тертя, що виникає при відносному переміщенні тіл, які дотикаються.
В’язке тертя – теря, що виникає при відносному русі між твердим тілом і рідинним газовим середовищем, а також між шарами цих середовищ.
Рух твердого тіла по похилій площині.
Коли тіло рухається по похилій пощині на тіло діють три сили: сила тяжіння, спрямована вниз, сила реакції опори, спрямована перпендикулярно площині, і сила тертя, спрямована уздовж площини в сторону, протилежну руху тіла:
Оскільки рух рівноприскорений, то за другим законом Ньютона:
В проекціях з урахуванням знаків це рівняння записується так:
Допоміжне
рівняння:
35.Гідростатика.Фізичні властивості рідин.
Гідроста́тика
— розділ гідромеханіки, що вивчає закони
рівноваги рідини, які перебуває у стані
абсолютного чи відносного спокою та
рівноваги тіл, занурених у рідини за
умови, коли відсутні переміщення часток
рідини одна відносно одної. Основним
завданням гідростатики є визначення
(опис) скалярного поля тиску у рідині,
що перебуває у спокої. Цей тиск описується
рівнянням:
де:
— векторне поле одиничних масових сил
(сила, що діє на одиницю маси рідини);
— густина (питома маса) рідини;p — тиск.
Рідиною називається фізичне тіло, яке опирається зміні свого об’єму (в протилежність газам) та слабко опирається зміні своєї форми (в протилежність твердим тілам).
Фізичні властивості рідин
Випаровування є процесом переходу рідини в газоподібний стан. Цей процес обумовлений проривом молекул рідини крізь вільну поверхню та розповсюдженням їх в оточуючому просторі. Якщо об'єм цього простору достатньо великий, випаровування триває до зникнення рідини, хоча частина молекул, що випарувались, повертається в рідину — конденсується. Якщо об'єм недостатньо великий, випаровування триває до настання динамічної рівноваги, коли кількість випаруваних і кількість молекул, що конденсуються за деякий час, вирівнюються. При цьому в оточуючому просторі встановлюється тиск, що називається тиском насиченої пари рн.пабо пружністю насиченої пари. Величина цього тиску залежить від температури.
Розчинення газів в рідинах є процесом проникнення молекул газу з навколишнього середовища через вільну поверхню всередину рідини.
Кипіння — процес зростання пухирців пару всередині рідини з подальшим їх проривом крізь вільну поверхню в навколишнє середовище.
Теплове розширення — здатність рідин змінювати об'єм при зміні температури. Характеризується коефіцієнтом теплового розширення. Він рівний відносній зміні об'єму W при зміні температури t на один градус при постійному тиску.
Стисливість — здатність рідин зменшувати об'єм при збільшенні тиску .Характеризується коефіцієнтом стисливості вр, який рівний відносній зміні об'єму W при зміні тиску р на одиницю.
В'язкість — властивість рідин чинити опір відносному зсуву шарів, що викликаний деформацію зсуву.
Текучість- властивість тіл пластично або в'язко деформуватися під дією напруги.