Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матан.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
870.86 Кб
Скачать

34. Теорема Ляпунова

Если независимые случайные величины не распределены по нормальному закону, то можно наложить на них некоторые весьма нежесткие ограничения, и их сумма будет все-таки распределена нормально.

 Эту задачу поставили и решили в основном русские ученые П. Л. Чебышев и его ученики А. А. Марков и А. М. Ляпунов.

 

Теорема (Ляпунов).

Если независимые случайные величины  имеют  конечные математические ожидания  и конечные дисперсии  , число их достаточно велико, а при неограниченном возрастании 

,

где    - абсолютные центральные моменты третьего порядка, то сумма их с достаточной степенью точности имеет распределение  

(Фактически мы приводим не теорему Ляпунова, а одно из следствий из нее, так как этого следствия вполне достаточно для практических приложений. Поэтому условие  , которое названо условием Ляпунова, является более сильным требованием, чем необходимо для доказательства собственно теоремы Ляпунова.)

 

Смысл условия   состоит в том, что действие каждого слагаемого (случайной величины) невелико по сравнению с суммарным действием их всех. Многие случайные явления, встречающиеся в природе и в общественной жизни, протекают именно по такой схеме. В связи с этим теорема Ляпунова имеет исключительно большое значение, а нормальный закон распределения является одним из основных  законов в теории вероятностей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]