Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матан.docx
Скачиваний:
0
Добавлен:
25.12.2019
Размер:
870.86 Кб
Скачать

1. Сочетания, размещения, перестановки. Основные правила комбинаторики

Правило суммы. Если некоторый объект   можно выбрать   способами, а другой объект   можно выбрать   способами, то выбор "либо  , либо  " можно осуществить   способами.

Правило произведения. Если объект   можно выбрать   способами, а после каждого такого выбора другой объект   можно выбрать (независимо от выбора объекта   способами, то пары объектов   и   можно выбрать   способами.

Перестановками называют комбинации, состоящие из одних и тех же n

различных элементов и отличающиеся только порядком их расположения. Число всех

возможных перестановок

Pn = n!,

где n! = 1 * 2 * 3 ... n.

Заметим, что удобно рассматривать 0!, полагая, по определению, 0! = 1.

Размещениями называют комбинации, составленные из n различных элементов

по m элементов, которые отличаются либо составом элементов, либо их порядком.

Число всех возможных размещений

Amn = n (n - 1)(n - 2) ... (n - m + 1).

Сочетаниями называют комбинации, составленные из n различных элементов по

m элементов, которые отличаются хотя бы одним элементом. Число сочетаний

С mn = n! / (m! (n - m)!).

примеры перестановок, размещений, сочетаний

Подчеркнем, что числа размещений, перестановок и сочетаний связаны равенством

Amn = PmC mn.

2. Классическое определение вероятности

ОПРЕДЕЛЕНИЕ (классическое определение вероятности). Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу.

Итак, вероятность события А определяется формулой:

где m – число элементарных исходов, благоприятствующих А; n – число всех возможных элементарных исходов испытания.

Два события называются равновероятными (или равновозможными), если нет никаких объективных причин считать, что одно из них может наступить чаще, чем другое.

3. Геометрическая и статическая вероятность

Статистическое определение вероятностей

В качестве статистической вероятности события принимают относительную частоту или число, близкое к ней.

Относительной частотой события называют отношение числа испытаний, в которых события появилось, к общему числу фактически произведенных испытаний. Таким образом, относительная частота события А определяется формулой W(A) = m/n, где m - число появления события, n - общее число испытаний. Геометрическая вероятность.

Чтобы преодолеть недостаток классического определения вероятности, состоящий в том, что оно неприменимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности ? вероятность попадания точки в область (отрезок, часть плоскости и т.д.).

Пусть отрезок l составляет часть отрезка L. На отрезок L на удачу поставлена точка. Это означает выполнение следующих предположений: поставленная точка может оказаться в любой точке отрезка L, вероятность попадания точки на отрезок l пропорциональна длине этого отрезка и не зависит от его расположения относительно отрезка L. В этих предположениях вероятность попадания точки на отрезок l определяется равенством. P = Длина l / длина L.

Пусть некоторая n-мерная фигура (отрезок, плоская фигура, пространственная фигура) составляет часть другой n-мерной фигуры. Если предположить, что вероятность попадания точки на эту фигуру пропорциональна её мере (длине, площади, объёму) и не зависит от взаимного расположения меньшей и большей фигур, то вероятность попадания точки на эту фигуру определяется равенствами

P=l/L P=s/S P=v/V

При статистическом определении в качестве вероятности события принимают его относительную частоту.

где m - число испытаний, в которых событие A наступило, n - общее число произведённых испытаний. W(A) = m/n

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]