
- •Раздел 1
- •Глава I основные свойства металлов и сплавов, применяемых в машиностроении.
- •§ 1. Свойства металлов и сплавов
- •§ 2. Кристаллизация металлов и сплавов
- •§ 3, Построение диаграммы состояния
- •§ 4. Структурные составляющие железоуглеродистых сплавов
- •§ 5. Диаграмма состояния системы железо — углерод
- •§ 6. Практическое применение диаграммы состояния железоуглеродистых сплавов
- •Глава III
- •§ 7. Исходные материалы для доменного производства
- •§ 9. Устройство доменной печи и вспомогательные устройства при ней
- •§ 10. Физико-химические процессы, происходящие в доменной печи
- •§ 11. Расход материалов и тепла на 1 кг выплавляемого чугуна
- •§ 12. Технико-экономические показатели доменной плавки
- •§ 13. Продукты доменного производства и их использование
- •§ 14. Методы прямого восстановления железа из руд
- •§ 15. Устройство доменного цеха
- •Глава IV
- •§ 16. Современные способы производства стали
- •§ 17. Производство стали методом продувки жидкого чугуна воздухом или кислородом в конвертерах
- •§ 18. Производство стали на поду мартеновской печи
- •Основной процесс плавки на жидкой завалке
- •§ 19. Контроль плавки и качества получаемой стали
- •§ 20. Технико-экономические показатели работы мартеновских печей
- •§ 21. Производство стали в электропечах
- •§ 22. Комбинированные методы плавки стали с применением электропечей
- •§ 23. Разливка стали в слитки
- •§ 24. Строение стального слитка и его пороки
- •Глава V металлургия меди
- •§ 25. Медные руды и их обогащение
- •§ 26. Получение расплава сульфидов меди и железа (медного штейна)
- •§ 27 Получение черновой меди
- •§ 28. Огневой способ рафинирования меди
- •§ 29. Электролитическое рафинирование меди
- •§ 30. Гидрометаллургический способ получения меди
- •Глава VI металлургия алюминия
- •§ 31. Характеристика алюминиевых руд и их месторождения
- •§ 32. Способы получения чистого глинозема
- •§ 33. Электролиз глинозема и применяемое оборудование
- •§ 34. Рафинирование алюминия и гост на алюминий
- •§ 35. Электротермический способ получения алюминиевых сплавов и алюминия
- •Глава VII
- •§ 36. Характеристика сырья для производства магния
- •§ 37. Подготовка магниевого сырья для электролиза
- •§ 38. Устройство электролизной ванны для получения магния
- •§ 39. Технология электролиза магния из хлоридов магния
- •§ 40. Рафинирование магния
- •§ 41. Понятие о производстве магния термическими методами
- •Раздел III литейное производство
- •Общие понятия
- •Глава IX
- •9 42. Общие сведения
- •§43. Материалы, применяемые для изготовления моделей и стержневых ящиков
- •§ 44. Принципы конструирования моделей и стержневых ящиков
- •§ 45. Технология изготовления деревянной модели
- •§ 46. Изготовление металлических моделей
- •§ 4 Конструирование детали с учетом' изготовления модели
- •§ 48. Формовочные и стержневые материалы, смеси и их приготовление
- •Стержневые смеси и их составы
- •§ 49. Приготовление формовочных и стержневых смесей
- •§ 50. Оборудование для приготовления формовочных и стержневых смесей и его работа
- •§ 51. Технология изготовления форм
- •Изготовление формы в двух опоках по разъемной модели при ручной формовке
- •Изготовление форм в почве с одной опокой
- •Изготовление крупных литейных форм
- •Изготовление форм при машинной формовке
- •§ 52. Формовочные машины
- •§ 53. Литниковая система
- •§ 54. Конструирование деталей с учетом изготовления форм
- •§ 55. Изготовление стержней
- •§ 56. Сушка форм и стержней
- •Отделка и контроль сухих стержней и форм
- •§ 57. Сборка форм
- •§ 58. Конструирование внутренних полостей и отверстий в отливке
- •§ 59. Требования, предъявляемые к сплавам как литейным материалам, и процесс образования отливки в форме
- •§ 60 Конструирование деталей с учетом литейных свойств сплава
- •Глава X
- •§ 61. Микроструктура чугуна в отливке
- •§ 62. Влияние химического состава и скорости охлаждения на микроструктуру чугуна
- •§ 63. Высокопрочный серый чугун
- •§ 64. Серый чугун со специальными свойствами
- •§ 65. Шихтовые материалы для чугунного литья
- •§ 66. Плавильные печи и плавка чугуна
- •§ 67. Особенности изготовления форм для чугунного литья
- •§ 68. Заливка форм
- •Глава XI
- •§ 69. Механические свойства и структура ковкого чугуна
- •§ 70. Литейные свойства белого чугуна
- •§ 71. Печи для плавки белого чугуна
- •§ 72. Особенности изготовления форм
- •§ 73. Термическая обработка отливок из белого чугуна
- •§ 74. Печи для отжига отливок
- •Глава XII производство стальных отливок
- •§ 75. Механические свойства и области применения сталей
- •§ 76. Микроструктура сталей
- •§ 77. Специальные сорта стали
- •§ 78. Печи для плавки стали
- •§ 79. Плавка стали в малом конвертере с кислой футеровкой
- •§ 80. Особенности изготовления форм
- •§ 81. Разливка стали
- •§ 82. Термическая обработка стальных отливок
- •Глава XIII
- •§ 83 Медные сплавы
- •§ 84. Шихтовые материалы
- •§ 85. Плавильные печи и плавка в них медных сплавов
- •§ 86. Формовочные и стержневые смеси
- •§ 87. Особенности формовки
- •§ 88. Алюминиевые сплавы
- •§ 89. Шихтовые материалы
- •§ 90. Печи для плавки алюминиевых сплавов
- •§ 91. Плавка алюминиевых сплавов
- •§ 92. Особенности формовки и заливки алюминиевых сплавов
- •§ 93. Магниевые литейные сплавы и их свойства
- •§ 95. Печи для плавки магниевых сплавов
- •§ 96. Особенности формовки и заливки магниевых сплавов
- •§ 97. Термическая обработка алюминиевых и магниевых сплавов
- •§ 98. Антифрикционные сплавы на основе олова и свинца
- •Глава XIV выбивка, обрубка и очистка литья
- •Глава XV
- •§ 99. Литье в металлические формы
- •§ 100. Литье под давлением
- •§ 102 Центробежное литье
- •§ 103. Производство точных отливок по выплавляемым моделям
- •Глава XVI
- •§ 104. Брак литья и его причины
- •§ 105. Исправление литейных пороков в отливках
- •§ 106. Перспективы развития литейного производства
- •Раздел IV обработка металлов давлением
- •Глава XVII общие понятия
- •§ 107. Сущность обработки металлов давлением
- •§ 108. Влияние обработки давлением и условий ее осуществления на свойства и структуру исходного материала
- •Глава XVIII
- •§ 109. Термический режим
- •§ 110 Нагревательные устройства
- •Глава XIX
- •§ 111. Сущность процесса
- •§ 112. Сортамент проката
- •§ 113. Прокатное оборудование
- •Глава XX волочение
- •§ 114. Сущность процесса
- •§ 115. Волочильное оборудование
- •Глава XXI прессование
- •§ 116. Сущность процесса
- •Глава XXII
- •§ 117. Общие понятия о кузнечно-штамповочном производстве
- •§ 118. Общие понятия о свободной ковке
- •§ 119. Оборудование для свободной ковки
- •§ 120. Технология свободной ковки
- •Глава XXII/
- •§ 121. Сущность процесса
- •§ 122. Штамповочные молоты
- •§ 123. Молотовые штампы
- •§ 124. Вес исходного материала для штамповки на молоте
- •§ 125 Штамповка на кривошипных горячештамповочных прессах
- •§ 125 Штамповка на кривошипных горячештамповочных прессах
- •§ 126. Штамповка на горизонтально-ковочных машинах
- •§ 127. Другие виды горячей объемной штамповки
- •§ 128. Отделочные операции после штамповки
- •§ 129. Особенности ковки и штамповки алюминиевых, магниевых и медных сплавов
- •§ 130. Холодная высадка
- •Глава XXIV
- •§ 131 Сущность процесса
- •§ 132. Технология листовой штамповки
- •§ 133. Конструкции штампов
- •§ 134. Механизация листоштамповочных работ
- •§ 135. Оборудование листовой штамповки
- •§ 136. Штампованно-сварные конструкции
- •Раздел V
- •Глава XXV
- •Глава XXVI
- •137. Сварочные машины и аппараты для дуговой электросварки
- •§ 138. Электроды.
- •§ 139. Сварные соединения.
- •§ 140. Техника ручной сварки
- •§ 141. Сварка угольной дугой.
- •Глава XXVII автоматическая дуговая сварка
- •§ 142. Автоматические установки для дуговой электросварки
- •§ 143. Шланговый полуавтомат
- •§ 144. Видь! автоматической сварки
- •§ 145. Флюсы и электродная проволока
- •§ 148. Техника сварки под флюсом
- •§ 147. Электрошлаковая сварка
- •§ 148. Дуговая сварка в защитных газах
- •§ 149. Технологические особенности дуговой сварки сталей
- •§ 150. Технологические приемы сварки конструкционных сталей
- •§ 151. Сварка аустёнитных сталей
- •§ 152. Примеры изготовления сварных конструкций дуговой электросваркой
- •Глава XXVIII контактная электросварка
- •§ 153. Физическая сущность процесса
- •§ 154. Стыковая сварка
- •§ 155. Точечная сварка
- •§ 156. Шовная сварка
- •Глава XXIX
- •§ 157. Газы
- •§ 159. Аппаратура для газовой сварки
- •§ 160. Техника сварки
- •§ 161. Газовая сварка стали
- •§ 162. Газопрессовая сварка
- •§ 163. Кислородная резка
- •§ 164. Аппаратура для кислородной резки
- •§ 165. Резка стали больших толщин
- •§ 166. Поверхностная резка
- •Глава XXX сварка чугуна и цветных металлов и сплавов
- •§ 167. Сварка чугуна
- •§ 168. Сварка цветных металлов
- •§ 169. Наплавка твердых сплавов
- •Глава XXXI
- •Глава XXXII
- •Глава XXXIII виды заготовок и их предварительная обработка
- •§ 170. Виды заготовок
- •§ 171. Основные понятия о технологичности конструкций
- •§ 172. Припуски на обработку
- •§ 173. Разметка заготовок
- •§ 174. Предварительная обработка заготовок из проката
- •§ 175. Механизированные слесарные работы.
- •§ 176. Краткий перечень методов обработки металлов резанием
- •§ 177. Понятия о вспомогательном оборудовании, принадлежностях, приспособлениях, установке и закреплении заготовок для обработки
- •Глава XXXIV
- •§ 178. Видь! процессов резания. Поверхности на обрабатываемых
- •§ 179. Резец, его части и элементы
- •§ 180. Материалы, применяемые для изготовления резцов
- •§ 181. Цельные и составные резцы
- •§ 182. Процесс резания и стружкообразования
- •Образование нароста при резании
- •§ 183. Силы резания
- •§ 184. Износ инструментов
- •§ 185. Стойкость инструментов. Скорость и мощность резания
- •§ 186. Основное технологическое время
- •§ 187. Высокопроизводительное резание металлов
- •Глава XXXV приводы и основные механизмы металлорежущих станков.
- •§ 188. Типы приводов станков. Кинематические схемы
- •§ 189. Передачи, применяемые в станках
- •§ 190. Ряды чисел оборотов и подач станков
- •191. Элементарные механизмы шестеренных коробок
- •§ 192. Приводы бесступенчатого регулирования чисел оборотов
- •§ 193 Реверсивные механизмы. Механизмы поступательно-возвратного и периодического движения
- •Глава XXXVI
- •§ 194. Токарно-винторезный станок
- •§ 195. Основные типы токарных резцов.
- •§ 196. Принадлежности и приспособления к токарным
- •§ 197. Работы, выполняемые на токарных станках
- •§ 198. Лобовые и карусельные станки
- •§ 199. Многорезцовые токарные станки
- •§ 200. Токарно-револьверные станки
- •§ 201. Токарные автоматы и полуавтоматы
- •Глава XXXVII
- •§ 202. Сверла. Элементы резания при сверлении
- •§ 203. Зенкеры, развертки и метчики
- •§ 204. Основы резания при сверлении
- •§ 205. Сверлильные станки
- •§ 206. Принадлежности и приспособления к сверлильным станкам
- •§ 207. Работы, выполняемые на сверлильных станках
- •§ 208. Расточные станки
- •§ 209. Работы, выполняемые на расточных станках
- •Глава XXXVIII
- •§ 210. Фреза и ее элементы
- •§ 211. Основы резания при фрезеровании
- •§ 212. Основные типы фрез
- •§ 213. Фрезерные станки
- •§ 214 Принадлежности и приспособления к фрезерным станкам
- •§ 215. Работы, выполняемые на фрезерных станках
- •395. Делительная головка.
- •Глава XXXIX
- •§ 216. Строгальные и долбежные резцы. Элементы резания при строгании и долблении
- •Строгального (слева) и долбежного (справа) резцов; д и е — схемы деформации строгальных резцов в процессе резания
- •§ 217. Станки строгальной группы
- •§ 218. Работы, выполняемые на строгальных станках
- •Глава xl
- •§ 219. Протягивание как технологический процесс
- •Схемы резания при протягивании
- •Методы протягивания
- •§ 220. Элементы протяжки
- •Элементы резания при протягивании
- •§ 221. Протяжные станки
- •§ 222. Работы выполняемые на протяжных станках
- •Глава xl1
- •§ 223. Понятие о шлифовании. Шлифовальные круги и их строение
- •Абразивные материалы
- •§ 224. Шлифовальные станки
- •Круглошлифовальный станок
- •§ 225. Работы, выполняемые на шлифовальных станках
- •§ 226. Отделочные работы
- •Глава xl1i
- •§ 227. Фрезерование зубчатых колес. Зубофрезерный станок
- •§ 228 Нарезание зубчатых колес на зубодолбежных и зубострогальных
- •§ 229. Понятие о зубоотделочных станках
- •Глава xliii
- •§ 230. Электроискровой метод обработки металлов
- •§ 23V электрохимические способы обработки металлов
- •Анодно-механический метод обработки металлов
- •Обработка материалов с помощью ультразвуковых колебаний
- •§ 232. Обработка резанием конструкционных пластмасс
- •Глава xliv
- •Раздел VII неметалические материалы общие сведения
- •Глава xlv древесные материалы
- •§ 233. Физико - механические свойства древесных материалов
- •§ 234. Лесоматериалы. Шпон и фанера
- •Глава xlv/ пластические массы, их свойства и применение
- •§ 235. Основные технологические методы изготовления деталей и изделий из пластмасс
- •§ 236. Технология переработки порошкообразных и волокнистых прессматериалов в пластмассовые детали и изделия
- •§ 237. Основные физико-механические свойства некоторых типов порошкообразных и волокнистых пластмасс и области их применения
- •§ 238. Технология переработки слоистых композиций
- •§ 239. Основные физико-механические свойства некоторых типов слоистых пластиков и области их применения
- •§ 240. Технология получения органического стекла, полистирола, целлулоида и винипласта
- •§ 241. Основные физико-механические свойства органического стекла, полистиро'ла, целлулоида и винипласта и области их применения
- •§ 242. Новые типы пластических масс — полиэтилен, фторопласты, полиамиды
- •§ 243. Газонаполненные пластмассы или пенопласты
- •§ 244. Основные принципы конструирования прессованных пластмассовых деталей
- •Глава xlv1i лакокрасочные материалы
- •Глава xlvhi резиновые материалы и изделия
- •§ 245. Основные процессы резинового производства
- •Особенности изготовления армированной, пористой и твердой резин
- •§ 246. Основные физико-механические свойства некоторых типов резины и область их применения
- •Глава X.Lix кожа, ее свойства и применение
- •§ 247. Технология получения стекла и стеклоизделия
- •§ 248. Особенности производства оптического, тройного и других стекол
- •§ 249. Основные свойства стекол
- •§ 250. Стеклянное волокно и изделия из него
§ 3, Построение диаграммы состояния
Обычно для построения диаграммы состояния пользуются термическим: методом, т. е. строят кривые охлаждения и по остановкам и перегибам на кривой охлаждения, вызванным тепловым эффектом превращений, определяют температуры превращения (критические точки).
Фиг.3 Кривые изображения сплавов свинец сурьма.
На фиг. 3 приведены кривые охлаждения сплавов свинец — сурьма при различном их составе. Горизонтальные площадки и точки перегиба соответствуют критическим точкам.
Имея достаточное количество сплавов с различным соотношением количества свинца и сурьмы и определив в каждом сплаве температуры
превращения (критические точки), можно построить диаграмму состояния. На фиг. 4 приведена диаграмма состояния для сплава свинец — сурьма, составленная на основе кривых охлаждения (фиг. 3). Геометрическое место точек начала кристаллизации /—/ образует линию АСВ (фиг. 4). Геометрическое место точек 2—2' (фиг. 3), определяющих полное затвердевание сплавов, выражено на фиг. 4 линией ДСЕ.
Оба компонента в жидком состоянии не ограниченно растворимы, а в твердом со стоянии обладают полной Фиг. 4. Диаграмма состояния сплава полной нерастворимостью свинец — сурьма, построенная по и не образуют химических соединений. На кривых охлаждения, приведенным линии АС диаграммы (фиг. 4), сплавы на фиг. 3. чинают (при охлаждении) выделять кристаллы РЬ, а на линии СВ. — кристаллы Sb. На линии ДСЕ из жидкого сплава, содержащего Sb и РЬ при концентрации С, выделяются одновременно кристаллы РЬ и Sb, образуя структуру механической смеси, называемую эвтектикой. В остальных точках этой линии происходит полное затвердевание сплава РЬ и Sb и образуется эвтектика, причём на линии ДС образуется структура, состоящая из кристаллов РЬ и эвтектической смеси, а на линии СЕ — структура кристаллов Sb и эвтектического сплава.
Сплавы металлов имеют различные виды диаграмм состояния.
При дальнейшем охлаждении некоторые твердые растворы претерпевают процессы кристаллизации в твердом состоянии (процессы вторичной кристаллизации). Это явление вызывается либо аллотропическими превращениями, претерпеваемыми одним из компонентов, либо понижением растворимости одного компонента в другом при охлаждении твердого раствора. В этом случае диаграмма состояния приобретает более сложный вид (фиг. 5).
§ 4. Структурные составляющие железоуглеродистых сплавов
В зависимости от температуры и содержания углерода железоуглеродистые сплавы могут иметь следующие структурные составляющие: аустенит, ледебурит, перлит, феррит и цементит, фосфидная эвтектика, графит.
Структуру, металла изучают на шлифованных, полированных и протравленных образцах при увеличении 100—500 раз и более.
Физико-химическая природа структурных составляющих железоуглеродистых сплавов различна.
Аустенит является твёрдым раствором углерода в железе (это было впервые доказано работами А. А. Байкова).
Предельная концентрация углерода в аустените составляет 2,0% при 1130°. С понижением температуры растворимость углерода в аустените уменьшается и стремится к 0,80%. Такую предельную концентрацию аустенит имеет при 723°. Эта температура является одновременно нижней границей существования устойчивого аустенита в углеродистых сталях. Сталь, имеющая структуру аустенита, немагнитна и обладает большой пластичностью.
Феррит представляет собой твердый раствор углерода в железе. Углерода в железе растворяется до 0,02% при 723°. Феррит характеризуется незначительными величинами твердости и прочности и высокой пластичностью. Механические свойства феррита сильно зависят от величины зерна.
Цементит представляет собой химическое соединение железа с углеродом, т. е. карбид железа Fe3C. Цементит содержит 6,67% углерода, весьма тверд и хрупок. Твердость его приближается к Нв = = 800 кг/мм2.
Перлитом называют механическую смесь феррита и цементита, являющуюся продуктом распада медленно охлаждаемого аустенита. Концентрация углерода в перлите составляет 0,80%. Твердость перлита Нв = 180 -h 220. Сталь, содержащая 0,80% С, имеет чисто перлитную структуру.
Ледебуритом называют механическую смесь аустенита и цементита, образующуюся при кристаллизации жидкого сплава, содержащего |4,3% С. При 723° аустенит превращается в перлит. Это превращение охватывает и аустенит, входящий в состав ледебурита. Таким образом, ниже 723° ледебурит представляет собой уже не смесь аустенита с цементитом, а смесь перлита с цементитом.
Фосфидная эвтектика может быть двойной (Fe + Fe3P) и тройной (Fe + Fe3P + Fe8C). Фосфидная эвтектика легкоплавка и имеет повышенную твердость (Нв = 400).
Графит представляет собой свободный углерод, расположенный в основной массе металла в виде пластинок или зерен.
Фиг. 56. Диаграмма состояния железо — цементит:
/ —жидкое состояние; // — жидкий сплав и кристаллы аустенита; /// —жидкий сплав и кристаллы первичного
цементита; /V- — кристаллы аустенита; V —кристаллы аустенита и вторичного цементита; VI—кристаллы
аустенита и вторичного цементита на фоне ледебурита; VII —кристаллы первичного цементита на фоне
ледебурита; VIII — кристаллы аустенита и феррита; IX— кристаллы ферриту и перлита; X — кристаллы
вторичного цементита и перлит; X/— перлит на фоне ледебурита; XII — первичный цементит на фоне
ледебурита