- •В.Г. Шуваев Электромеханические системы
- •1. Общие представления об электроприводе
- •1.1. Понятие электропривода
- •2. Механика электропривода
- •2.1. Расчетная схема механической части электропривода
- •2.2. Уравнение движения электропривода
- •2.3. Установившееся движение электропривода
- •2.4. Неустановившееся движение электропривода
- •3. Принципы управления электроприводом
- •3.1. Принципы управления пуском и торможением в резисторных электроприводах
- •3.1.1. Управление двигателем в функции времени
- •3.1.2. Управление двигателем в функции скорости
- •3.1.3. Управление двигателем в функции тока
- •3.1.4. Управление двигателем в функции пути (принципы позиционирования электропривода)
- •3.2. Управление скоростью электропривода
- •4.1. Схемы включения и статические характеристики двигателя
- •4.2. Энергетические режимы работы двигателя
- •4.3. Регулирование частоты вращения двигателей изменением сопротивления в цепи якоря
- •4.4. Расчёт регулировочных резисторов в цепи якоря двигателя
- •4.5. Регулирование тока и момента при торможении и реверсе двигателя
- •4.6. Регулирование скорости двигателя изменением магнитного потока
- •4.7. Регулирование скорости вращения двигателя изменением напряжения, подводимого к якорной цепи
- •4.7.1. Система генератор-двигатель (г-д)
- •4.7.2. Система «тиристорный преобразователь – двигатель (тп-д)»
- •4.8. Регулирование скорости вращения двигателя изменением напряжения на якоре с помощью импульсных регуляторов напряжения
- •Характеристики (б) дпт нв
- •4.9. Регулирование скорости вращения двигателя шунтированием якоря
- •4.10. Регулирование координат привода в системе «источник тока – двигатель (ит-д)»
- •5. Электропривод с асинхронными двигателями
- •5.1. Схемы включения и замещения асинхронных двигателей
- •5.2. Статические характеристики асинхронного двигателя
- •5.3. Режимы работы асинхронного двигателя
- •5.4. Регулирование координат асинхронного двигателя с помощью резисторов
- •Второй вариант: включение добавочного резистора в цепь ротора.
- •5.5. Регулирование координат электропривода с асинхронным двигателем изменением напряжения
- •5.6. Регулирование скорости вращения асинхронного двигателя изменением частоты питающей сети
- •5.7. Регулирование скорости вращения асинхронного двигателя изменением числа пар полюсов
- •1 . Схема соединения секций обмоток y-δ
- •2. Схема соединения секций обмоток y-yy
- •3 . Схема соединения секций обмоток δ-yy
- •5.8. Торможение асинхронных двигателей
- •5.9. Асинхронные исполнительные двигатели
- •6. Защита, блокировки и сигнализация, применяемые в электромеханических системах
- •6.1 Защита электродвигателей
- •6.2. Блокировки, используемые в схемах электропривода
- •6.3. Сигнализация в схемах электропривода
1. Общие представления об электроприводе
Для приведения в движение большинства рабочих машин необходима механическая энергия. Источником механической энергии чаще всего является электропривод, осуществляющий преобразование электрической энергии в механическую [1; 5; 11; 13] .
1.1. Понятие электропривода
Электропривод – электромеханическая система, состоящая из электродвигательного, преобразовательного, передаточного и управляющего устройств, предназначенная для приведения в движение исполнительного органа рабочей машины и управления этим движением.
В некоторых случаях преобразовательное и передаточное устройства могут отсутствовать.
В электроприводе можно выделить два канала: силовой и информационный. По силовому каналу осуществляется передача энергии от источника (сети) к рабочей машине, по информационному – управление потоком энергии, а также сбор и обработка информации о состоянии и работе системы.
Рис. 1.1. Функциональная схема электропривода:
ИС ВУ - информационная система более высокого уровня;
ПЭ - преобразователь электрической энергии;
ЭМП - электромеханический преобразователь;
ПМ - преобразователь механической энергии;
ИО РМ - исполнительный орган рабочей машины;
ИП - информационный преобразователь;
УУ - устройство управления;
ЗУ - задающее устройство
Силовой канал (рис. 1.1) включает в себя различные устройства, такие как преобразователь электрической энергии (ПЭ), электромеханический преобразователь (ЭМП) и преобразователь механической энергии (ПМ).
Преобразователь электрической энергии служит для получения электрической энергии требуемых параметров и позволяет управлять потоком энергии на электромеханическом преобразователе.
ЭМП является основной частью электропривода и предназначен для преобразования электрической энергии в механическую, чаще всего это электродвигатель (ЭД).
Механическая энергия передается рабочей машине (РМ) с помощью ПМ, который обеспечивает согласование вида и скоростей движения рабочих органов машины и ЭМП.
Информационный канал (рис. 1.1) включает в себя информационные преобразователи (ИП), управляющие устройства (УУ) и в ряде случаев каналы связи с ИС ВУ верхнего уровня. УУ на основании информации, получаемой по каналам связи от ИП, от задающего устройства (ЗУ) управляет ПЭ, ЭМП, ПМ. В качестве ПЭ используются управляемые выпрямители, инверторы тока и напряжения, импульсные регуляторы напряжения, регуляторы частоты и напряжения питающей сети. В качестве ЭМП чаще всего используются электродвигатели постоянного тока (ДПТ), асинхронные (АД), синхронные, вентильные, шаговые и линейные, а также другие ЭМП.
В качестве ПМ используются ременные и цепные передачи, передачи винт-гайка, различного вида редукторы, гидравлические и электромагнитные муфты.
УУ являются: кнопки управления, командоаппараты, реле, микропроцессоры, управляющие ЭВМ.
Классификация электропривода (ЭП) достаточно обширна, отметим лишь ее основные направления:
ЭП можно классифицировать по назначению: на главный, обеспечивающий основное движение исполнительного органа (ИО) и технологический процесс, и вспомогательный, обеспечивающий вспомогательное движение.
По виду привода ИОРМ: на групповой, обеспечивающий основное движение нескольких ИО, и индивидуальный, движение одного ИО.
По виду движения: на вращательный и линейный, непрерывного действия и дискретный, реверсивный и нереверсивный.
По роду тока: постоянного и переменного тока.
По виду ПМ: редукторный и безредукторный, гидравлический и маховиковый.
По типу ПЭ: электромашинный, с магнитными усилителями, ионный, тиристорный и транзисторный.
По возможностям управляющего устройства: нерегулируемый и регулируемый, автоматизированный и неавтоматизированный.
Общие требования к электроприводу.
Надежность (ЭП обязан выполнять заданные функции в оговоренных условиях в течение определенного времени).
Точность (обеспечение ЭП необходимой точности).
Быстродействие (способность системы быстро реагировать на различные
воздействия).
Качество переходных процессов (качество динамики).
Энергетическая эффективность (расход электроэнергии на единицу продукции).
Совместимость с системой электроснабжения и информационной
системой более высокого уровня.
Ресурсоемкость: материалоемкость, энергоемкость, расходы на проектирование, монтаж и т. д.
